Math, asked by 16mehul2006, 1 year ago

Prove

 {a}^{3}  +  {b}^{3}  +  {c}^{3}  - 3abc = ( {a}^{2}  +  {b }^{2}  +  {c}^{2}  -ab  - bc - ca) \times ( a+ b + c )
100 points

Answers

Answered by Anonymous
5

here ,

RHS =

 ({a}^{2}  +  {b}^{2}  +  {c}^{2}  - ab - bc - ca)(a + b + c) \\  \\  =  {a}^{2} (a + b + c)  +  {b}^{2} (a + b + c)  +  {c}^{2} (a + b + c)  - ab(a + b + c)  - bc(a + b + c)  - ca(a + b + c)  \\  \\  now \: simplify \: above \: eqution \:  \\  \\  =  ({a}^{3}  +  {a}^{2} b +  {a}^{2} c) + ( {b}^{2} a +  {b}^{3}  +  {b}^{2} c) + ( {c}^{2} a +  {c}^{2} b +  {c}^{3} )  + ( -  {a}^{2} b  -  {b}^{2} a - abc) + ( - abc -  {b}^{2} c -  {c}^{2} b) + ( -  {a}^{2} c - abc -  {c}^{2} a) \\  \\ now \: remove \: brakets \\  \\  =  {a}^{3}  +  {a}^{2} b +  {a}^{2} c +  {b}^{2} a +  {b}^{3}  +  {b}^{2} c +  {c}^{2} a +  {c}^{2} b +  {c}^{3}  -  {a}^{2} b -  {b}^{2} a - abc - abc -  {b}^{2} c -  {c}^{2} b -  {a}^{2} c - abc -  {c}^{2} a \\  \\  =  {a}^{3}  +  {b}^{3}  +  {c}^{3}  - abc - abc - abc \\  \\  = {a}^{3}  +  {b}^{3}  +  {c}^{3}  - 3abc  \\  \\ because \: others \: terms \: are \: oposite \: sign \: to \: each \: other \: so \: it \: is \: cancelled \: out \\  \\ so \: we \: can \: show \: that \\  \\  = {a}^{3}  +  {b}^{3}  +  {c}^{3}  - 3abc

so RHS = LHS

terms are so long so you swipe your screen left and right...

hope it helps.....

mark me as brainliest

and

follow me &

thanked my answers...

● keep smiling &

always shining........:-)

Answered by codiepienagoya
0

Simplify:

Step-by-step explanation:

\ Given \ value:\\\\a^3+b^3+c^3-3abc=(a^2+b^2+c^2-ab-bc-ca)\times (a+b+c)\\\\\ Solution:\\\\\ solve \ R.H.S \ part:\\\\(a^2+b^2+c^2-ab-bc-ca)\times (a+b+c)\\\\\rightarrow a^3+a^2b+a^2c+ab^2+b^3+b^2c+ac^2+bc^2+c^3-a^2b-ab^2-abc-abc-b^2c-b^2c^2-ca^2-abc-c^2a\\\\\rightarrow a^3+a^2b+a^2c+ab^2+b^3+b^2c+ac^2+bc^2+c^3-a^2b-ab^2-3abc-b^2c-b^2c^2-ca^2-c^2a\\\\ \ by \ add \ and \ subtract \ we \ get  \\\\\rightarrow a^3+b^3+c^3-3abc\\\\

Learn more:

  • Simplify: https://brainly.in/question/8451502
Similar questions