prove
Answers
Answered by
20
hєч!!!
ѕσlutíσn íѕ ín thíѕ gívєn píc
____________________
hσpє ít hєlpѕ чσu!!!
@Rajukumar111
ѕσlutíσn íѕ ín thíѕ gívєn píc
____________________
hσpє ít hєlpѕ чσu!!!
@Rajukumar111
Attachments:
Answered by
25
Given,
a= sinx
b= tanx
.
Taking LHS,
→1/a² -1/b² putting a= sinx and b= tanx we get,
→1/sin²x -1/tan²x
→1/sin²x -cot²x ........(cotx = 1/tanx)
→1/sin²x - cos²x/sin²x
Taking LCM,
→(1 - sin²x)/cos²x
We know that sin²x + cos²x=1 or (1-sin²x) = cos²x
Hence,
(1 - sin²x)/cos²x
→cos²x/cos²x
→ 1 .
Proved.
a= sinx
b= tanx
.
Taking LHS,
→1/a² -1/b² putting a= sinx and b= tanx we get,
→1/sin²x -1/tan²x
→1/sin²x -cot²x ........(cotx = 1/tanx)
→1/sin²x - cos²x/sin²x
Taking LCM,
→(1 - sin²x)/cos²x
We know that sin²x + cos²x=1 or (1-sin²x) = cos²x
Hence,
(1 - sin²x)/cos²x
→cos²x/cos²x
→ 1 .
Proved.
akhlaka:
nice answer
Similar questions