Math, asked by ItzFadedGuy, 3 months ago

Prove:

\bf{\dfrac{tan \theta}{1-cot \theta}+\dfrac{cot \theta}{1-tan \theta} = 1+sec \theta cosec \theta}

[Hint: Write the expression in terms of:
\sf{sin \theta \:and \:cos \theta}]

Chapter: Introduction to Trigonometry

Class: 10th

Concept: Trigonometric Identities.

• Quality answer needed!

• No spamming

• Thanks for helping me!​

Answers

Answered by VεnusVεronίcα
99

\large \pmb{\mathfrak{Question:-}}

Prove that :

\red{\tt\cfrac{tan\theta}{1-cot\theta}+\cfrac{cot\theta}{1-tan\theta}=1+sec\theta cosec\theta}

⇒Hint : Write the expression in terms of \tt sin\theta and \tt cos\theta.

\\

\large \pmb{\mathfrak{Solution:-}}

\red{\tt :\implies LHS= \cfrac{\cfrac{sin\theta}{cos\theta}}{1-\cfrac{cos\theta}{\sin\theta}}+\cfrac{\cfrac{cos\theta}{sin\theta}}{1-\cfrac{sin\theta}{cos\theta}} }

\green{\tt :\implies\cfrac{\cfrac{sin\theta}{cos\theta}}{\cfrac{sin\theta-cos\theta}{sin\theta}} +\cfrac{\cfrac{cos\theta}{sin\theta}}{\cfrac{cos\theta-sin\theta}{cos\theta}}}

\red{\tt:\implies \cfrac{sin\theta}{cos\theta}\times(\cfrac{sin\theta}{sin\theta-cos\theta})+\cfrac{cos\theta}{sin\theta}\times(\cfrac{cos\theta}{cos\theta-sin\theta})}

\green{\tt:\implies \cfrac{sin^2\theta}{cos\theta(sin\theta-cos\theta)}+\cfrac{cos^2\theta}{sin\theta(cos\theta-sin\theta)}}

\red{\tt:\implies Multiplying~\cfrac{cos^2\theta}{sin\theta(cos\theta-sin\theta)}~with~"-" ~:}

\green{\tt:\implies \cfrac{sin^2\theta}{cos\theta(sin\theta-cos\theta)}-\cfrac{cos^2\theta}{sin\theta(sin\theta-cos\theta)}}

\red{\tt :\implies Taking~LCM~and~solving:}

\green{\tt:\implies (\cfrac{sin^2\theta}{cos\theta(sin\theta-cos\theta)}\times\cfrac{sin\theta}{sin\theta}) -(\cfrac{cos^2\theta}{sin\theta(sin\theta-cos\theta)}\times \cfrac{cos\theta}{cos\theta})}

\red{\tt :\implies \cfrac{sin^3\theta-cos^3\theta}{sin\theta~cos\theta(sin\theta-cos\theta)}}

\green{\tt :\implies \cfrac{\cancel{(sin\theta-cos\theta)}(sin^2\theta+cos^2\theta+sin\theta~cos\theta)}{sin\theta~cos\theta\cancel{(sin\theta-cos\theta)}} }

\red{\tt:\implies \cfrac{sin^2\theta +cos^2\theta +sin\theta~cos\theta}{sin\theta~cos\theta}}

\green{\tt:\implies \cfrac{1+sin\theta~cos\theta}{sin\theta~cos\theta} }

\red{\tt:\implies \cfrac{1}{sin\theta~cos\theta}+\cancel{\cfrac{sin\theta~cos\theta}{sin\theta~cos\theta}}}

\green{\tt:\implies 1+\cfrac{1}{sin\theta}~\cfrac{1}{cos\theta}}

\red{\tt:\implies 1+sec\theta~cosec\theta=RHS}

\\

\large \pmb{\mathfrak{Concepts~used:-}}

\red{\tt:\implies tan\theta=\cfrac{sin\theta}{cos\theta}}

\green{\tt:\implies cot\theta=\cfrac{cos\theta}{sin\theta}}

\red{\tt:\implies sin^2\theta+cos^2\theta=1 }

\green{\tt:\implies x^3-y^3=(x-y)(x^2+y^2+xy)}

Answered by TheDiamondBoyy
53

\sf\underline\red{Question:-}

Prove :

{\tt\cfrac{tan\theta}{1-cot\theta}+\cfrac{cot\theta}{1-tan\theta}=1+sec\theta cosec\theta}

concept used :

{\tt:\implies tan\theta=\cfrac{sin\theta}{cos\theta}}

{\tt:\implies cot\theta=\cfrac{cos\theta}{sin\theta}}

{\tt:\implies sin^2\theta+cos^2\theta=1 }

{\tt:\implies x^3-y^3=(x-y)(x^2+y^2+xy)}

\\

\sf\underline\pink{Solution:-}

{\tt :\implies LHS= \cfrac{\cfrac{sin\theta}{cos\theta}}{1-\cfrac{cos\theta}{\sin\theta}}+\cfrac{\cfrac{cos\theta}{sin\theta}}{1-\cfrac{sin\theta}{cos\theta}} }

{\tt :\implies\cfrac{\cfrac{sin\theta}{cos\theta}}{\cfrac{sin\theta-cos\theta}{sin\theta}} +\cfrac{\cfrac{cos\theta}{sin\theta}}{\cfrac{cos\theta-sin\theta}{cos\theta}}}

{\tt:\implies \cfrac{sin\theta}{cos\theta}\times(\cfrac{sin\theta}{sin\theta-cos\theta})+\cfrac{cos\theta}{sin\theta}\times(\cfrac{cos\theta}{cos\theta-sin\theta})}

{\tt:\implies \cfrac{sin^2\theta}{cos\theta(sin\theta-cos\theta)}+\cfrac{cos^2\theta}{sin\theta(cos\theta-sin\theta)}}

{\tt:\implies Multiplying~\cfrac{cos^2\theta}{sin\theta(cos\theta-sin\theta)}~with~"-" ~:}

{\tt:\implies \cfrac{sin^2\theta}{cos\theta(sin\theta-cos\theta)}-\cfrac{cos^2\theta}{sin\theta(sin\theta-cos\theta)}}

{\tt :\implies Taking~LCM~and~solving:}

{\tt:\implies (\cfrac{sin^2\theta}{cos\theta(sin\theta-cos\theta)}\times\cfrac{sin\theta}{sin\theta}) -(\cfrac{cos^2\theta}{sin\theta(sin\theta-cos\theta)}\times \cfrac{cos\theta}{cos\theta})}

{\tt :\implies \cfrac{sin^3\theta-cos^3\theta}{sin\theta~cos\theta(sin\theta-cos\theta)}}

{\tt :\implies \cfrac{\cancel{(sin\theta-cos\theta)}(sin^2\theta+cos^2\theta+sin\theta~cos\theta)}{sin\theta~cos\theta\cancel{(sin\theta-cos\theta)}} }

{\tt:\implies \cfrac{sin^2\theta +cos^2\theta +sin\theta~cos\theta}{sin\theta~cos\theta}}

{\tt:\implies \cfrac{1+sin\theta~cos\theta}{sin\theta~cos\theta} }

{\tt:\implies \cfrac{1}{sin\theta~cos\theta}+\cancel{\cfrac{sin\theta~cos\theta}{sin\theta~cos\theta}}}

{\tt:\implies 1+\cfrac{1}{sin\theta}~\cfrac{1}{cos\theta}}

{\tt:\implies 1+sec\theta~cosec\theta=RHS}

\\

Similar questions