Math, asked by coctests999, 1 month ago

Prove:
 \cos(x) ^{6}  +  \sin(x)^{6}  = 1 - 3 \cos(x)^{2} - 3 \cos(x)^{4}
Who spams is a fool.​

Answers

Answered by TrustedAnswerer19
20

Correct question is :

 \sf \: prove :   \\  {\rm \:  {cos}^{6} x +  {sin}^{6} x = 1 - 3 {cos}^{2} x + 3 {cos}^{4} x}

Solution :

 \orange{ \boxed{\boxed{\begin{array}{cc}\rm \: L.H.S =  {cos}^{6}x +  {sin}^{6} x \\  \\  \rm =  {( {cos}^{2}x) }^{3}  +  {( {sin}^{2} x)}^{3}  \\  \\  \pink{ {\boxed{\begin{array}{cc}\rm \to \:we \: know \: that \\  \\  \rm \:  {x}^{3} +  {y}^{3}  =  {(x + y)}^{3}  - 3xy(x + y) \end{array}}}} \\  \\ \small{  \rm =  {( {cos}^{2}x +  {sin}^{2}  x)}^{3}   - 3 {cos}^{2}x. {sin}^{2}  x( {cos}^{2} x +  {sin}^{2}x)} </p><p>\\  \\  \rm =  {1}^{3}  - 3 {cos}^{2} x. {sin}^{2}  x \times 1 \\  \\  \rm = 1 - 3 {cos}^{2}x(1 -  {cos}^{2} x) \\  \\  \rm = 1 - 3 {cos}^{2}  x + 3 {cos}^{4}x \\  \\  =  \rm \: R.H.S \end{array}}}}

Answered by mathdude500
18

Appropriate Question :-

Prove that

\rm :\longmapsto\: {sin}^{6}x \:  +  \:  {cos}^{6}x = 1 - 3 {cos}^{2}x +  3{cos}^{4}x

 \purple{\large\underline{\sf{Solution-}}}

Consider LHS

\rm :\longmapsto\: {sin}^{6}x \:  +  \:  {cos}^{6}x

can be rewritten as

\rm \:  =  \: {\bigg[ {sin}^{2}x\bigg]}^{3}  +  {\bigg[ {cos}^{2}x \bigg]}^{3}

We know,

 \red{\boxed{ \rm{ \:  {x}^{3} +  {y}^{3} =  {(x + y)}^{3} - 3xy(x + y) \: }}}

So, using this identity, we get

\rm \:  =  \: {\bigg[ {sin}^{2}x +  {cos}^{2}x \bigg]}^{3} - 3 {sin}^{2}x {cos}^{2}x\bigg[ {sin}^{2}x +  {cos}^{2}x  \bigg]

We know,

 \red{\boxed{ \rm{ \:  {sin}^{2}x +  {cos}^{2}x = 1 \:  \: }}}

So, using this identity, we get

\rm \:  =  \: {1}^{3} - 3 {sin}^{2}x {cos}^{2}x(1)

\rm \:  =  \: 1 - 3 {sin}^{2}x {cos}^{2}x

can be rewritten as

\rm \:  =  \: 1 - 3 \: [1 -  {cos}^{2}x ] \: {cos}^{2}x

\rm \:  =  \:1 - 3 {cos}^{2}x +  3{cos}^{4}x

Hence,

 \red{\rm :\longmapsto\:} \red{\boxed{ \rm{ \:  {sin}^{6}x \:  +  \:  {cos}^{6}x = 1 - 3 {cos}^{2}x +  3{cos}^{4}x \:  \: }}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions