Math, asked by ayushi144, 1 year ago

prove
evaluate \:  \frac{ \sqrt{5 }  + \sqrt{3}  }{ \sqrt{5 }  - \sqrt{3 \: }  }  \: given \: that \:   \sqrt{15 }  = 3.87

Answers

Answered by skh2
0
Hello,

The first step is to rationalise the given real number.
So,.on rationalization we get
\frac{ \sqrt{5 } + \sqrt{3} }{ \sqrt{5 } - \sqrt{3 \: } }   \\  =  \frac{( \sqrt{5} +  \sqrt{3}  )( \sqrt{5}  + \sqrt{3}  )}{( \sqrt{5}  -  \sqrt{3} )( \sqrt{5}  +  \sqrt{3}) }  \\  =  \frac{ {( \sqrt{5}  +  \sqrt{3}) }^{2} }{ { \sqrt{5} }^{2}  -  { \sqrt{3} }^{2} }  \\  =  \frac{5 + 3 + 2 \sqrt{15} }{5 - 3 }  \\  =  \frac{8 + 2 \sqrt{15} }{2}  \\  =  \frac{2(4 +  \sqrt{15} )}{2}  = 4 +  \sqrt{15}
Also,

We have given that the value of root15 is equal to 3.87.

So ,
If we put the value in the simplified real number we can get the answer easily .
Putting values ....

4 +  \sqrt{15}  = 4 + 3.87 = 7.87
Hence,
The answer is 7.87

Hope this will be helping you ✌️
Similar questions