Math, asked by rajneeshshukla3448, 1 year ago

Prove:  \frac{secA- tanA}{secA+ tanA} = 1 - 2 sec A. tan A + 2 tan^2A

Answers

Answered by waqarsd
4
check the attachment
Attachments:
Answered by Avengers00
15
\underline{\huge{\textsf{To Prove:}}}

\frac{sec\: A- tan\: A}{sec\: A+ tan\: A} = 1 - 2 sec\: A. tan\: A + 2tan^{2}\: A

\underline{\underline{\huge{\textbf{Solution:}}}}

\underline{\large{\textsf{Step-1:}}}
Consider LHS

\underline{\textbf{LHS=}}

\implies \frac{sec\: A- tan\: A}{sec\: A+ tan\: A}

\underline{\large{\textsf{Step-2:}}}
Rationalize the Numerator

i.e., Multiply and Divide with (sec\: A- tan\: A) on both sides

\implies \frac{sec\: A- tan\: A}{sec\: A+ tan\: A} \times \frac{sec\: A- tan\: A}{sec\: A- tan\: A}

\implies \frac{(sec\: A- tan\: A)^{2}}{(sec\: A+ tan\: A)(sec\: A- tan\: A)} ————[1]

\underline{\large{\textsf{Step-3:}}}
Using the identity \sf \mathbf{(a-b)^{2} = a^{2} +b^{2} - 2ab}

(sec\: A- tan\: A)^{2} =sec^{2}\: A+ tan^{2}\: A- 2sec\: A\, tan\: A

Substituting in [1]

\implies \frac{sec^{2}\: A+ tan^{2}\: A- 2sec\: A\, tan\: A}{(sec\: A+ tan\: A)(sec\: A- tan\: A)} ————[2]

\underline{\large{\textsf{Step-4:}}}
Using the identity \sf \mathbf{(a+b)(a-b) = a^{2} -b^{2}}

(sec\: A+ tan\: A)(sec\: A- tan\: A)= sec^{2}\: A-tan^{2}\: A

Substituting in [2]

\implies \frac{sec^{2}\: A+ tan^{2}\: A- 2sec\: A\, tan\: A}{sec^{2}\: A- tan^{2}\: A} ————[3]

\underline{\large{\textsf{Step-5:}}}
Using the identity \sf \mathbf{sec^{2}\: \theta = 1 + tan^{2}\: \theta}

sec^{2}\: A = 1+tan^{2}\: A
Substituting in [3]

\implies \frac{(1+tan^{2}\: A)+ tan^{2}\: A- 2sec\: A\, tan\: A}{(1+tan^{2}\: A)- tan^{2}\: A}

\implies \frac{1+2 tan^{2}\: A- 2sec\: A\, tan\: A}{1}

\implies 1+2 tan^{2}\: A- 2sec\: A\, tan\: A

\implies 1- 2sec\: A\, tan\: A +2 tan^{2}\: A

\underline{\textbf{=RHS}}

\textsf{Hence Proved}

muakanshakya: Fabulous Answer ! :)
Avengers00: thank you (:
muakanshakya: ^_^
Similar questions