Math, asked by ayushkumarmohanty5, 4 months ago

Prove :

 \frac{ \tan(θ) }{1 -  \cot(θ) }  +  \frac{ \cot(θ) }{1 -  \tan(θ) }  = 1 +  \tan(θ) +  \cot(θ)

Answers

Answered by amritamohanty1472
28

Answer:

 \huge \mathfrak {Question:-}

Prove:-

 \frac{ \tan(θ) }{1 -  \cot(θ) }  +  \frac{ \cot(θ) }{1 -  \tan(θ) }  + 1 +  \tan(θ) +  \cot(θ)

 \huge  \mathfrak {Solution : - }

 \bf L.H.S -  \frac{ \tanθ }{1 -  \cotθ } +  \frac{  \cotθ }{1 -  \tanθ }  =  \frac{  {  - \tan}^{2} θ }{1 -  \tanθ } +  \frac{  \cotθ}{1 -  \tanθ }   =  \frac{ -   { \tan }^{2} θ +  \cotθ }{1 -  \tan θ}   \\  \bf multiply \:  \tanθ  \: by  \tanθ \: we \: get :   \\  \bf  =   \frac{1 -  { \tan }^{3} θ}{ \tanθ -( 1 -  \tanθ)}  \\  \bf =  \frac{(1 -  \tanθ)(1 +  \tanθ +  { \tan }^{2} θ)}{ \tanθ(1 -  \tanθ)} \\  \bf  =  \frac{(1 +  \tanθ +  { \tan }^{2}θ)  }{ \tanθ}  \\ \bf  =   \cot θ + 1 +  \tanθ = R.H.S

Hence Proved !!

Answered by gsgaisg
2

Answer:

So is co and I have to measure do ✌️ 4 4 44 on the wall and then the rest of the Covid-19 lockdown on these the other following a that

Similar questions