Math, asked by fab13, 10 months ago

prove:
 \sec {}^{4}  \alpha  +  { \tan {}^{4}  \alpha } = 1 + 2 \sec {}^{2}  \alpha  \tan{}^{2}  \alpha

Answers

Answered by rishu6845
22

\bold{\pink{To \: prove}}\longrightarrow \\  {sec}^{4}  \alpha  +  {tan}^{4}  \alpha  = 1 + 2 {sec}^{2}  \alpha  \:  {tan}^{2} \alpha

\bold{\green{Concept \: used}}\longrightarrow \\ 1)1 + {tan}^{2} \alpha  =  {sec}^{2}   \alpha  \\  =  > 1 =  {sec}^{2}  \alpha  -  {tan}^{2}  \alpha  \\ 2) {(x - y)}^{2}  =  {x}^{2}  +  {y}^{2}  - 2xy

\bold{\blue{Solution}}\longrightarrow \\\pink{LHS} \\  =  {sec}^{4}  \alpha  +  {tan}^{4}  \alpha  \\  =  {(sec}^{2}  \alpha)  ^{2}  +  { ({tan}^{2} \alpha  )}^{2}  \\adding \: and \: subtracting \:  {sec}^{2} \alpha  {tan}^{2}  \alpha  \\    =  { ({sec}^{2}  \alpha) }^{2}  +  {( {tan}^{2} \alpha ) }^{2}   -  2 {sec}^{2}  \alpha  {tan}^{2}  \alpha   + 2 {sec}^{2}  \alpha  {tan}^{2}  \alpha  \\  =  {( {sec}^{2} \alpha  -  {tan}^{2}  \alpha ) }^{2}  + 2 {sec}^{2}  \alpha  \:  {tan}^{2}  \alpha  \\ now \: , {sec}^{2}  \alpha  -  {tan}^{2}  \alpha  = 1 \:, using \: it \:  \\  =  {(1)}^{2}  + 2 {sec}^{2}  \alpha  {tan}^{2}  \alpha  \\  = 1 + 2 {sec}^{2}  \alpha  {tan}^{2}  \alpha  \\  =\pink{ RHS}

\bold{\red{Additional \: information}}\longrightarrow \\1) {sin}^{2}  \alpha  +  {cos}^{2}  \alpha  = 1 \\ 2)1 +  {cot}^{2}  \alpha  =  {cosec}^{2}  \alpha  \\ 3)sin(90 ^{0}  -  \alpha ) = cos \alpha  \\ 4) \cos(90 ^{0}   -  \alpha ) = sin \alpha

Similar questions