Math, asked by Anonymous, 4 months ago

Prove:-
 \sf \dfrac{sinA \:  - cosA + 1 }{sinA \:   +  cosA  -  1}  =  \dfrac{1}{secA - tanA}
  \tt \red {No \:  spam!} \\ \  \textless \ br /\  \textgreater \  \rm \green⋆ \: Proper  \: explanation \:  \green ⋆\  \textless \ br /\  \textgreater \

Answers

Answered by Anonymous
13

Answer:

Hope it helps!! Mark this answer as brainliest if u found it useful and follow me for quick and accurate answers...

Attachments:
Answered by riya15042006
2

LHS = \frac{sinA - cosA + 1}{sinA + cosA - 1}

⇒ Divide cosA in each term

\frac{tanA -1 + secA}{tanA +1 - secA}

\frac{(tanA + secA )- 1}{(tanA - secA) + 1}

\frac{[ (tanA + secA ) -1] ( tanA - secA )}{ [(tanA - secA ) +1] ( tanA - secA)}

\frac{( tan^{2}A - sec^{2}A) - ( tanA - secA)  }{( tanA - secA + 1 )( tanA - secA)}

\frac{-1-tanA+secA}{( tanA - secA + 1) (tanA - sec A)}

\frac{-1}{tanA - secA}

\frac{1}{secA - tanA}

So LHS = RHS

I hope it helps u dear friend

Similar questions