Math, asked by saryka, 3 months ago

Prove: \sf{\log_3x+2·\log_x3=3}

Answers

Answered by mathdude500
70

Appropriate Question :-

Solve for x :-

\rm :\longmapsto\: log_{3}(x)  + 2 \:  log_{x}(3) = 3

\large\underline{\sf{Solution-}}

Given equation is

\rm :\longmapsto\: log_{3}(x)  + 2 \:  log_{x}(3) = 3

can be rewritten as

\rm :\longmapsto\: log_{3}(x)  + \dfrac{2}{log_{3}(x)} \:   = 3

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \green{\boxed{ \bf \because \: log_{x}(y)  = \dfrac{1}{ log_{y}(x) }  }}

\bf :\longmapsto\:Let \: log_{3}(x) \:  =y -  -  - (1)

So, we get

\rm :\longmapsto\:y + \dfrac{2}{y} = 3

\rm :\longmapsto\: \dfrac{ {y}^{2} +  2}{y} = 3

\rm :\longmapsto\: {y}^{2} + 2 = 3y

\rm :\longmapsto\: {y}^{2} - 3y + 2 = 0

\rm :\longmapsto\: {y}^{2} - 2y - y + 2 = 0

\rm :\longmapsto\:y(y - 2) - 1(y - 2) = 0

\rm :\longmapsto\:(y - 2)(y - 1) = 0

\bf\implies \:y = 2 \:  \:  \:  \: or \:  \:  \:  \: y = 1

Case :- 1

\rm :\longmapsto\:When \: y \:  =  \: 2

\rm :\longmapsto\:log_{3}(x) = 2

 \:  \:  \:  \:  \:  \: \green{\boxed{ \bf \because \: log_{x}(y) = z \: then \: y =  {x}^{z} }}

\rm :\longmapsto\:x =  {3}^{2}

\bf\implies \:x = 9

Case :- 2

\rm :\longmapsto\:When \: y \:  =  \: 1

\rm :\longmapsto\:log_{3}(x) = 1

\rm :\longmapsto\:x =  {3}^{1}

 \:  \:  \:  \:  \:  \: \green{\boxed{ \bf \because \: log_{x}(y) = z \: then \: y =  {x}^{z} }}

\bf\implies \:x = 3

Verification :-

When x = 9

Consider LHS

\rm :\longmapsto\: log_{3}(9)  + 2 \:  log_{9}(3)

\rm : =  \:  \: \: log_{3}( {3}^{2} )  + 2 \:  log_{ {3}^{2} }(3)

\rm : =  \:  \: \: 2 + 2 \times  \dfrac{1}{2}

\rm  =  \:  \: \: 2 + 1

\rm  \:  \:  =  \: \: 3

Hence, LHS = RHS

Case :- 2

When x = 3

\rm :\longmapsto\: log_{3}(3)  + 2 \:  log_{3}(3)

 \: \rm \: =  \:  \: 1 + 2 \times 1

 \: \rm \: =  \:  \: 1 + 2

 \: \rm \: =  \:  \: 3

Hence, LHS = RHS

Similar questions