Math, asked by Anonymous, 2 days ago

Prove :

  \sf Q.  \:  \dfrac{sin2 \alpha}{1 + cos \alpha}  \times  \dfrac{cos \alpha}{1 +  cos \alpha}  = tan \dfrac{ \alpha}{2}


Thank you :) ​

Answers

Answered by Starrex
11

Tσ ρяσνє —

 \sf { \longrightarrow\: \dfrac{sin2 \alpha}{1 + cos2 \alpha} \times \dfrac{cos \alpha}{1 + cos \alpha} = tan \dfrac{ \alpha}{2}}

Sσℓυтiσи –

 \quad\sf{\longmapsto \left(\dfrac{sin2\alpha }{1+cos2\alpha }\right)\times \left(\dfrac{cos\alpha}{1+cos\alpha}\right)}

Using Formulas :

 \qquad\quad\sf{\leadsto cos2x = 2 cos^2x-1}

 \qquad\quad\sf{\leadsto  sin2x=2sin\:x\:cos\:x}

 \qquad\quad\sf{\leadsto sin\:x = 2\:sin\left(\dfrac{x}{2}\right)cos\left(\dfrac{x}{2}\right) }

 \qquad\quad\sf{\leadsto cos\:x=2cos^2 \left(\dfrac{x}{2}\right) -1}

Tнєrєfσrє —

 \quad\sf{\longmapsto \left(\dfrac{sin2\alpha }{1+cos2\alpha }\right)\times \left(\dfrac{cos\alpha}{1+cos\alpha}\right)}

 \quad\sf{\longmapsto \left(\dfrac{2sin\alpha cos\alpha}{2cos^2 \alpha}\right)\left(\dfrac{cos\alpha}{1+cos\alpha}\right)}

 \quad\sf{\longmapsto \dfrac{2\times sin\alpha\times cos\alpha\times cos\alpha}{2\times cos\alpha\times cos\alpha\times (1+cos\alpha)}}

 \quad\sf{\longmapsto \dfrac{sin\alpha}{1+cos\alpha}}

 \quad\sf{\longmapsto \dfrac{2sin\dfrac{\alpha}{2}cos\dfrac{\alpha}{2}}{2cos^2\dfrac{\alpha}{2}}}

 \quad\sf{\longmapsto \dfrac{\cancel{2}sin\dfrac{\alpha}{2}cos\dfrac{\alpha}{\cancel{2}}}{\cancel{2}\cos\dfrac{\alpha}{2}cos\dfrac{\alpha}{\cancel{2}}}}

\quad\sf{\longmapsto \dfrac{sin \left(\dfrac{\alpha}{2}\right)\cancel{cos\alpha}}{cos\left(\dfrac{\alpha}{2}\right)\cancel{cos\alpha}}}

 \quad\sf{\longmapsto \dfrac{\left(sin\dfrac{\alpha}{2}\right)}{\left(cos\dfrac{\alpha}{2}\right)} }

 \quad\sf{\longmapsto tan\dfrac{\alpha}{2}}

Hence , proved

Similar questions