Math, asked by abishekste, 9 months ago

prove
 \sqrt{1 -  \sin( \alpha ) }  \div  \sqrt{1 +  \sin( \alpha ) }  =  \sec( \alpha )  -  \tan( \alpha )

Answers

Answered by Kannan0017
0

Answer:

\sqrt{\frac{1+sin\theta}{1-sin\theta}}+\sqrt{\frac{1-sin\theta}{1+sin\theta}}=2sec\thetaStep-by-step explanation:\sqrt{\frac{1+sin\theta}{1-sin\theta}}+\sqrt{\frac{1-sin\theta}{1+sin\theta}}=\frac{\left(\sqrt{1+sin\theta}\right)^{2}+\left(\sqrt{1-sin\theta}\right)^{2}}{\sqrt{(1-sin\theta)(1+sin\theta)}}=\frac{1-sin\theta+1+sin\theta}{\sqrt{1^{2}-sin^{2}\theta}}=\frac{2}{\sqrt{cos^{2}\theta}}= \frac{2}{cos\theta}= 2sec\theta=$RHS$Therefore,\sqrt{\frac{1+sin\theta}{1-sin\theta}}+qrt{\frac

Step-by-step explanation:

hope it helps

Similar questions