Math, asked by krishbajrashakya3, 1 day ago

Prove:
[tex]\sqrt{3} cosec 20° - sec 20° = 4
Wrong answers will be reported.

Answers

Answered by Anonymous
11

Answer:

Formula used :-

 \rm  \green{\frac{1}{sin \theta}  = cosec \theta }

  \rm\blue{ \frac{1}{cos \theta}  = sec \theta}

 \rm \orange{sinA.cosB - cosA.sinB = sin(A - B)}

 \rm \purple{sinA.cosB - cosA.sinB = sin(A - B)}

Step-by-step explanation:

 \rm \sqrt{3} .cosec 20° - sec 20° = 4

 \rm LHS= \sqrt{3} .cosec 20° - sec 20° = 4

 \scriptsize \rm =  \frac{ \sqrt{3} }{sin20°}  -  \frac{1}{cos20°}  \:  [ \because \:  \frac{1}{sin \theta}  = cosec \theta \: and \:  \frac{1}{cos \theta}  = sec \theta]

 \rm = \frac{ \sqrt{3}.cos20°  - \:  sin20°}{sin20°cos20°}

 \rm On \:  multiplying  \: the \:  numerator \:  by  \: 2 \times  \frac{1}{2} ,

 \rm = \frac{ 2 \times  \frac{1}{2} [\sqrt{3}.cos20°  - \:  sin20° ]}{sin20°cos20°}

 \rm = \frac{ 2  [ \frac{ \sqrt{3} }{2} .cos20°  - \:   \frac{1}{2}. sin20° ]}{sin20°cos20°}

 \rm = \frac{ 2  [ sin60°.cos20°  - \:  cos60°. sin20° ]}{sin20°cos20°}

 \scriptsize \rm  =  \frac{2sin(60° -  \: 20°)}{sin20°.cos20°}  \:  [ \because \: sinA.cosB - cosA.sinB = sin(A - B)]

 \rm =  \frac{2sin40°}{sin20°.cos20°}

On multiplying the numerator by 2 in the denominator,

\rm =  \frac{2(2sin40°)}{2(sin20°.cos20°)}

\rm =  \frac{4sin40°}{2sin20°.cos20°}

\rm =  \frac{4sin40°}{sin2(20°)} \:   [ \because \: 2sinA.cosA = sin2A]

\rm =  \frac{4 \cancel{sin40°}}{ \cancel{sin40°}}

 = 4

 \rm = RHS

Similar questions