Math, asked by HeyThere222, 4 months ago

Prove \sqrt{\frac{1+sinA}{1-sinA} } = \frac{cosA}{1-sinA}

Answers

Answered by mrAdorableboy
3

 \sqrt{ \frac{1 +  \sin(a) }{1 -   \sin(a) } }  =  \frac{ \cos(a) }{1 -  \sin(a) }  \\ lhs =  \sqrt{ \frac{1 +  \sin(a) }{1 -  \sin(a) } }  \\  =   \frac{ \sqrt{1 +  \sin(a) } }{ \sqrt{1 -  \sin(a) } }   \times  \frac{ \sqrt{1 +  \sin(a) } }{1 +  \sin(a) }  \\  =  \frac{( { \sqrt{1 +  \sin(a)) } }^{2} }{ \sqrt{1 -   { \sin(a) }^{2}  } }  \\  =  \frac{1 +  \sin(a) }{ \sqrt{ { \cos(a) }^{2} } }  \\  =  \frac{1 +  \sin(a) }{ \cos(a) }  \\  \\ rhs =  \frac{ \cos(a) }{1 -  \sin(a) }  \\  =  \frac{ \cos(a) }{1 -  \sin(a) }  \times  \frac{1 +  \sin(a) }{1 +  \sin(a) }  \\  =  \frac{ \cos(a)(1 +  \sin(a))  }{1 -  { \sin(a) }^{2} }  \\  =  \frac{ \cos(a)( 1 +  \sin(a)) }{ { \cos(a) }^{2} }  \\  =  \frac{1 +   \sin(a) }{ \cos(a) }  \\  \\  \\ hence \: as \: lhs = rhs \\  \\  \\ so \: proved

Similar questions