Math, asked by Anonymous, 17 days ago

Prove :
\  \textless \ br /\  \textgreater \  \sf{ \dfrac{cos \: \theta}{sin \: \theta} = \dfrac{ \sin \: \cos}{x} }

Answers

Answered by amitbiswal660
4

❥︎ANSWER

ΔABC be a right angled at B

Let ∠ACB=θ

Given that, sin θ = 3/5

AB/AC = 3/5

Let AB = 3x

then AC = 5x

In right angled ΔABC,

By Pythagoras theorem,

We get

(5x)2=(3x)2+BC2

BC2=(5x)2−(3x)2

BC2=(2x)2

BC=4x

(i) cos θ = Base/ Hypotenuse

= BC / AC

= 4x /5x

= 4/5

(ii) tan θ = perpendicular/Base

= AB/BC

= 3x/4x

=3/4

❥︎THANKS

I hope it will help you

Similar questions