prove tha t Tan^2 A / (SecA-1)^2 = ( cosecA + cotA)^2
Answers
Answered by
0
tan²A / ( secA - 1 )² = ( cosecA + cotA)²
Taking L. H. S
= ( tanA / secA - 1 )²
= we know,
tan ¤ = sin¤ / cos¤ and
sec¤ = 1 / cos¤
= ( ( sinA / cosA ) / ( 1 / cosA ) - 1 )²
= ( sin A / cosA / ( 1 - cosA ) / cosA )²
= ( sinA / 1 - cosA)²
Rationalising the denominator
= ( sinA ( 1 - cosA ) / 1 - cos²A)²
= we know,
sin²¤ = 1 - cos²¤
= ( sinA ( 1 - cosA ) / sin²A )²
= ( 1 - cosA / sinA)²
= ( cosecA - cotA )²
Hence L. H. S = R. H. S
Hence proved.
Similar questions