Math, asked by salmanmohammad259, 9 months ago

Prove thaf ( a-b-c 2a 2a
2b b-c-a 2b = (a+b+c)*3
2c 2c c-a-b)

Answers

Answered by MaheswariS
2

\underline{\textsf{To prove:}}

\mathsf{\left|\begin{array}{ccc}a-b-c&2a&2a\\2b&b-c-a&2b\\2c&2c&c-a-b\end{array}\right|=(a+b+c)^3}

\underline{\textsf{Solution:}}

\textsf{Consider,}

\mathsf{\left|\begin{array}{ccc}a-b-c&2a&2a\\2b&b-c-a&2b\\2c&2c&c-a-b\end{array}\right|}

\textsf{Apply}\;\mathsf{R_1\implies\,R_1+R_2+R_3}

\mathsf{=\left|\begin{array}{ccc}a+b+c&a+b+c&a+b+c\\2b&b-c-a&2b\\2c&2c&c-a-b\end{array}\right|}

\textsf{Take a+b+c common from first row}

\mathsf{=(a+b+c)\left|\begin{array}{ccc}1&1&1\\2b&b-c-a&2b\\2c&2c&c-a-b\end{array}\right|}

\textsf{Apply}\;\mathsf{C_1\implies\,C_1-C_2,\;C_2\implies\,C_2-C_3}

\mathsf{=(a+b+c)\left|\begin{array}{ccc}0&0&1\\a+b+c&-(a+b+c)&2b\\0&a+b+c&c-a-b\end{array}\right|}

\textsf{Expanding along first row, we get}

\mathsf{=(a+b+c)[0-0+1((a+b+c)^2-0)]}

\mathsf{=(a+b+c)(a+b+c)^2}

\mathsf{=(a+b+c)^3}

\therefore\mathsf{\left|\begin{array}{ccc}a-b-c&2a&2a\\2b&b-c-a&2b\\2c&2c&c-a-b\end{array}\right|=(a+b+c)^3}

Similar questions