Math, asked by Beilieber1774, 11 months ago

Prove that 0.8333..... is a rational number. How can I prove?

Answers

Answered by shadowsabers03
1

Let,

\displaystyle\longrightarrow\sf{x=0.8333\dots\quad\quad\dots(1)}

\displaystyle\longrightarrow\sf{10x=8.333\dots\quad\quad\dots(2)}

Subtracting (1) from (2),

\displaystyle\longrightarrow\sf{10x-x=8.333\dots\ -\ 0.8333\dots}

\displaystyle\longrightarrow\sf{9x=(8.3+0.0333\dots)\ -\ (0.8+0.0333\dots)}

\displaystyle\longrightarrow\sf{9x=8.3+0.0333\dots\ -\ 0.8-0.0333\dots}

\displaystyle\longrightarrow\sf{9x=8.3-0.8}

\displaystyle\longrightarrow\sf{9x=7.5}

\displaystyle\longrightarrow\sf{x=\dfrac{7.5}{9}}

\displaystyle\longrightarrow\sf{x=\dfrac{5}{6}\quad\quad\dots(3)}

From (1) and (3),

\displaystyle\longrightarrow\sf{\dfrac{5}{6}=0.8333\dots}

Here \displaystyle\sf{0.8333\dots} is represented as a fraction, i.e., in \displaystyle\sf{\dfrac{p}{q}} form. Thus we can say that it is a rational number.

Hence Proved!

Similar questions