prove that 0.87×0.87×0.87+0.13×0.13×0.13÷0.87×0.87-0.87×0.13+0.13×0.13=1
Answers
Answered by
116
Answer :
Now, L.H.S.
= 0.87× 0.87 ×0.87 + 0.13× 0.13 × 0.13 ÷ 0.87 × 0.87 - 0.87 × 0.13 + 0.13 × 0.13
= 0.87³ + 0.13³ ÷ 0.87² - 0.87 × 0.13 + 0.13²
= (0.87³ + 0.13³) ÷ (0.87² - 0.87 × 0.13 + 0.13²)
= (0.87 + 0.13)
= 1 = R.H.S. [Proved]
[Using the identity rule :
a³ + b³ = (a + b)(a² - ab + b²)
⇒ (a³ + b³) ÷ (a² - ab + b²) = (a + b) ]
#MarkAsBrainliest
Now, L.H.S.
= 0.87× 0.87 ×0.87 + 0.13× 0.13 × 0.13 ÷ 0.87 × 0.87 - 0.87 × 0.13 + 0.13 × 0.13
= 0.87³ + 0.13³ ÷ 0.87² - 0.87 × 0.13 + 0.13²
= (0.87³ + 0.13³) ÷ (0.87² - 0.87 × 0.13 + 0.13²)
= (0.87 + 0.13)
= 1 = R.H.S. [Proved]
[Using the identity rule :
a³ + b³ = (a + b)(a² - ab + b²)
⇒ (a³ + b³) ÷ (a² - ab + b²) = (a + b) ]
#MarkAsBrainliest
Answered by
34
Answer:
Ok fine Mark as brainliest
Attachments:
Similar questions