Math, asked by Anonymous, 19 days ago

Prove that,
1/1 - 1/2 + 1/3 - 1/4 +... = ln(2)

This is a Harmonic Series with alternate signs.

Answers

Answered by mathdude500
12

\large\underline{\sf{Solution-}}

Let first derive the series of ln(1 + x)

Let assume that

\rm \: f(x) = ln(1+x) =  log_{e}(1 + x) \\

Let evaluate differential coefficients of f(x).

So,

\rm \: f'(x) = \dfrac{1}{1 + x}  \\

\rm \: f''(x) = \dfrac{ - 1}{(1 + x)^{2} }  \\

\rm \: f'''(x) = \dfrac{2}{(1 + x)^{3} }  \\

\rm \: f''''(x) = \dfrac{ - 6}{(1 + x)^{4} }  \\

.

.

.

Now, let evaluate the values of differential coefficients at x = 0.

So,

\rm \: f(0) =  log_{e}(1 + 0) =  log_{e}(1)  = 0 \\

\rm \: f'(0) = \dfrac{1}{1 + 0}  = 1 \\

\rm \: f''(0) = \dfrac{ - 1}{(1 + 0)^{2} } =  - 1  \\

\rm \: f'''(x) = \dfrac{2}{(1 + 0)^{3} } = 2  \\

\rm \: f''''(x) = \dfrac{ - 6}{(1 + 0)^{4} } =  - 6  \\

.

.

.

.

Now, By Maclaurin's Series, we have

\rm \: f(x) = f(0) + xf'(0) + \dfrac{ {x}^{2} }{2!}f''(0) + \dfrac{ {x}^{3} }{3!}f'''(0) + \dfrac{ {x}^{4} }{4!}f''''(0) +  -  -  -  \\

So, on substituting the values, we get

\rm \:  log_{e}(1 + x)  = 0 + x + \dfrac{ {x}^{2} }{2!}( - 1) + \dfrac{ {x}^{3} }{3!}(2) + \dfrac{ {x}^{4} }{4!}( - 6) +  -  -  -  \\

\rm \:  log_{e}(1 + x)  =  x - \dfrac{ {x}^{2} }{2} + \dfrac{ {x}^{3} }{3} -  \dfrac{ {x}^{4} }{4} +  -  -  -  \\

Thus, we derive the expression

\rm \:  log_{e}(1 + x) = x - \dfrac{ {x}^{2} }{2}  + \dfrac{ {x}^{3} }{3}  -  \dfrac{ {x}^{4} }{4} +  -  -  -

Now, Substituting x = 1, we get

\rm \:  log_{e}(1 + 1)  =  1 - \dfrac{ {1}^{2} }{2} + \dfrac{ {1}^{3} }{3}  - \dfrac{ {1}^{4} }{4} -  -  -  \\

\rm \:  log_{e}(2)  =  1 - \dfrac{ 1 }{2} + \dfrac{ 1 }{3}  - \dfrac{1 }{4} -  -  -  \\

Hence,

\rm\implies \:\rm \:  log_{e}(2)  = ln(2) =  1 - \dfrac{ 1 }{2} + \dfrac{ 1 }{3}  - \dfrac{1 }{4} -  -  -  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\boxed{\sf{  \:\rm \: sinx = x - \dfrac{ {x}^{3} }{3!} + \dfrac{ {x}^{5} }{5!} +  -  -  -  \:  \: }} \\

\boxed{\sf{  \:\rm \: cosx = 1 - \dfrac{ {x}^{2} }{2!} + \dfrac{ {x}^{4} }{4!} +  -  -  -  \:  \: }} \\

\boxed{\sf{  \:\rm \:  {e}^{x} = 1 + x + \dfrac{ {x}^{2} }{2!} + \dfrac{ {x}^{3} }{3!} +  -  -  -  \:  \: }} \\

\boxed{\sf{  \:\rm \:  {e}^{ - x} = 1  -  x + \dfrac{ {x}^{2} }{2!} - \dfrac{ {x}^{3} }{3!} +  -  -  -  \:  \: }} \\

\boxed{\sf{  \:\rm \:  {a}^{x} = 1 + loga + \dfrac{ {x}^{2} }{2!} {(loga)}^{2}  +  \dfrac{ {x}^{3} }{3!} {(loga)}^{3}  +  -  -  -  \:  \: }} \\


amansharma264: Excellent
mathdude500: Thank you so much
Similar questions