Prove that 1 + 1 * 1! + 2 * 2! + 3 * 3! + .... + n * n! = (n+1)!
Answers
Answered by
2
let n=1
1.1!=1.1=1=(n+1)!-1=2!-1=2-1=1
assumeF(k+1)=1.1!+2.2!+...+k.k!+(k+1).(k+1)!
=(k+1)!-1+(k+1).(k+1)!
=(k+1)!.((k+1)-1)=(k+1)!.(k)
I think i'm supposed tomake
(k+1)!.k=((k+1)+1)!+1=(k+2)!-1
1.1!=1.1=1=(n+1)!-1=2!-1=2-1=1
assumeF(k+1)=1.1!+2.2!+...+k.k!+(k+1).(k+1)!
=(k+1)!-1+(k+1).(k+1)!
=(k+1)!.((k+1)-1)=(k+1)!.(k)
I think i'm supposed tomake
(k+1)!.k=((k+1)+1)!+1=(k+2)!-1
Similar questions