Prove that 1 + 1. 1p1 + 2. 2p2 + 3. 3p3 + . N. Npn = n+1pn+1
Answers
Answered by
1
1 + 1. 1p1 + 2. 2p2 + 3. 3p3 + ...... N. Npn = n+1pn+1
We know that npn = n ! / ( n - n) ! = n !
We can prove using Principle of Mathematical induction
for n = 2
- 1 + 1 . 1p1 = 2 = 2 ! = 2p2
- 1 + 1 . 1p1 + 2 . 2p2 = 1 + 1 + 2 . 2! = 2 + 4 = 6 = 3 ! = 3p3
Therefore lets assume its true for n = k
- 1 + 1. 1p1 + 2. 2p2 + 3. 3p3 + ...... k. kpk = k+1pk+1 -- ( 1 )
For n = k + 1 ,
- 1 + 1. 1p1 + 2. 2p2 + 3. 3p3 + .. k. kpk + ( k + 1 ) .k+1pk+1 = k + 2pk + 2 - - ( 2 )
( 2 ) - ( 1 ) = =>
- LHS = ( k + 1 )( k + 1 ) !
- RHS = ( k + 2 ) ! - ( k + 1 ) ! = ( k + 1 ) ! ( k + 2 - 1 ) = ( k + 1 ) ( k + 1 ) !
- Since RHS = LHS , The expression is true for all n.
Similar questions