Math, asked by Dweepraj, 2 months ago

prove that 1/1+√2 + 1/√2+√3 + 1/√3+√4 + 1/√4+√5 + 1/√5+√6 + 1/√6+√7 + 1/√7+√8 + 1/√8+√9=2​

Answers

Answered by user0888
9

Before solving:-

First, we observe the same rule in each term. Such numbers are called sequences, and 'defining the sequences' means finding a common rule then writing in terms of a letter.

The sum of the sequence is called series, which is often denoted by \displaystyle \sum^{n}_{k=1}a_{k}. k=1 is the number for the first term, and n is the number for the last term.

Solution:-

Let's define the sequence as a_{n}=\dfrac{1}{\sqrt{n} +\sqrt{n+1} }.

\rightarrow a_{n}=\dfrac{1}{\sqrt{n} +\sqrt{n+1} } \times \dfrac{\sqrt{n} -\sqrt{n+1} }{\sqrt{n} -\sqrt{n+1} }

\rightarrow a_{n}=\dfrac{\sqrt{n} -\sqrt{n+1} }{n-(n+1)}

\rightarrow a_{n}=\dfrac{\sqrt{n} -\sqrt{n+1} }{-1}

\rightarrow a_{n}=\sqrt{n+1} -\sqrt{n}

Then \displaystyle \sum^{8}_{k=1}a_{k} is a telescoping series that cancel out, leaving the first and the last term.

\displaystyle \sum^{8}_{k=1}a_{k}

=\sqrt{8+1} -\cancel{\sqrt{8} }+\cancel{\sqrt{7+1} }- ...-\cancel{\sqrt{2} }+\cancel{\sqrt{1+1} }-\sqrt{1}

=\sqrt{9} -\sqrt{1}

=3-1=\boxed{2}

Hence proven.

Answered by taqueerizwan2006
1

{ \sf{ \dfrac{1}{1 +  \sqrt{2} }  +  \dfrac{1}{ \sqrt{2 }  +  \sqrt{3} }  +  \dfrac{1}{\sqrt{3}  +  \sqrt{4} }  +  \dfrac{1}{ \sqrt{4} +  \sqrt{5}  }  +  \dfrac{1}{ \sqrt{5} +  \sqrt{6}  }  +  \dfrac{1}{ \sqrt{6} +  \sqrt{7}  }  +  \dfrac{1}{ \sqrt{7} +  \sqrt{8}  }  +  \dfrac{1}{ \sqrt{8}  +  \sqrt{9} }  = 2}}

Now Rationalize the L.H.S term

{ \sf{ \dfrac{1( \sqrt{2} - 1) }{(1 +  \sqrt{2} )( \sqrt{2}   -  1)}  +  \dfrac{1( \sqrt{3}  -  \sqrt{2} )}{ (\sqrt{2 }  +  \sqrt{3} )( \sqrt{3}  -  \sqrt{2} )}  +  \dfrac{1( \sqrt{4}  -  \sqrt{3} )}{(\sqrt{3}  +  \sqrt{4})( \sqrt{4}  -  \sqrt{3})  }  +  \dfrac{1( \sqrt{5}  -  \sqrt{4}) }{ (\sqrt{4} +  \sqrt{5} )( \sqrt{5}  -  \sqrt{4} ) }  +  \dfrac{1( \sqrt{6}  -  \sqrt{5} )}{ (\sqrt{5} +  \sqrt{6} )( \sqrt{6}   -  \sqrt{5}) }  +  \dfrac{1( \sqrt{7}  -  \sqrt{6} )}{ (\sqrt{6} +  \sqrt{7} )( \sqrt{7}  -  \sqrt{6})  }  +  \dfrac{1( \sqrt{8}  -  \sqrt{7} )}{( \sqrt{7} +  \sqrt{8}  )( \sqrt{8}  -  \sqrt{7} )}  +  \dfrac{1( \sqrt{9}  -  \sqrt{8} )}{ (\sqrt{8}  +  \sqrt{9} )( \sqrt{9}  -  \sqrt{8}) }  }}

Using formula = ( a - b )( a + b ) = a² - b²

{ \sf{ { \cancel{ \sqrt{ {2}}} } - 1 + { \cancel{ \sqrt{3}  }}-  { \cancel{\sqrt{2}  }}+  { \cancel{\sqrt{4}  }}-  { \cancel{\sqrt{3}  }}+  { \cancel{\sqrt{5}}}  - { \cancel{ \sqrt{4}  }}+  { \cancel{\sqrt{6} }} -  { \cancel{\sqrt{5}}}  +{ \cancel{  \sqrt{7} }} - { \cancel{ \sqrt{6}}}  +  { \cancel{\sqrt{8}}}  - { \cancel{ \sqrt{7}}}  +  \sqrt{9}  -  { \cancel{\sqrt{8} }}}}

{ \sf{ \sqrt{9}  - 1}} = 3 - 1

{ \sf{ \therefore \: L.H.S\:  \:  =  \: {2}}}

L.H.S = R.H.S

Similar questions