Math, asked by okj41026, 3 months ago

prove that 1/1+a^x-y+1/1+a^y-x =1

Answers

Answered by 10240shreyansh
0

Answer:

Let (1+x+1y)=t , then yt=1+y+xy

Consider, (1+y+1z) . Multiply and divide by xz .

xz+xyz+xxz=y(1+x+1y)=yt …..using xyz=1

Consider, (1+x+1y) . Multiply and divide by yz .

yz+xyz+zyz=(1+z+1x)yz

i.e., yztyz=(1+z+1x)yz

i.e., yzt=(1+z+1x)

i.e., (1+z+1x)=tx …..using xyz=1

So the LHS of the problem becomes:

1t+1yt+xt

=1+y+xyyt=ytyt=1

Riya Rohilla

Answered February 4, 2018Siddhant Grover

Muthusamy Piramanayagam ( முத்துசாமி பிரமநாயகம்)

Updated January 7, 2020

Let P = ( 1+ x + 1/y ) = ( 1+ x + xz) since xyz = 1————-(1)

Let Q= ( 1+ y+ 1/z) = ( 1+ y + xy ) ————-(2)

Let R= ( 1+ z+ 1/x) = ( 1+ x + yz) —————(3)

Py = ( y+xy + 1) = Q , ————(4) ,

Pyz = (zy + 1 + z) =R ————-(5)

( 1/P + 1/ Q + 1/ R ) = (1/P) ( 1 + 1/y + 1/ zy)

( 1/P + 1/ Q + 1/ R ) = (1/P) ( 1 +xz+ x)

= (1/P) *P = 1. And the proof.

Tanu Shyam Majumder

Answered September 21, 2018

xyz=1. Let x=a/b,y=b/c,z=c/a

1+x+y^(-1)=1+a/b+c/b=(a+b+c)/b

1+y+z^(-1)=1+b/c+a/c=a+b+c/c

1+z+x^(-1)=1+c/a+b/a=a+b+c/a

(1+x+y^(-1))^(-1)+(1+y+z^(-1))^(-1)+ (1+z+x^(-1))^(-1)=b/a+b+c + c/a+b+c + a/a+b+c=a+b+c/a+b+c=1(answer)

Harsh Dwivedi

Answered January 17, 2020

11+x+1y+11+y+1z+11+z+1xA key Note is provided to us thatxyz=1yy+xy+1+zz+zy+1+xx+xz+1x=1yz,xz=1z,xy=1zyy+1z+1+zy+zy+1+x1yz+1y+1yzz+yz+1+zy+zy+1+xyzz+yz+1z+yz+1z+yz+1=1Hence,proved■

Space Mafia

Answered January 21, 2018

Mayuree

Answered January 21, 2018

=1(1+x+xz)+1(1+(xz)−1+z−1)+1(1+z+x−1) =1(1+x+xz)+1(1+(xz)−1+z−1)+1(1+z+x−1)

=1(1+x+xz)+xz(xz+1+x)+x(x+xz+1) =1(1+x+xz)+xz(xz+1+x)+x(x+xz+1)

=1(1+x+xz)+xz(1+x+xz)+x(1+x+xz) =1(1+x+xz)+xz(1+x+xz)+x(1+x+xz)

=1+x+xz(1+x+xz) =1+x+xz(1+x+xz)

=1

Vishal Shukla

Answered April 5, 2018

Substitute z=1/xy in LHS.

And solve for LHS you will get it equal to RHS.

LHS= (y/(1+xy+y))+(1/(1+y+xy))+(xy/(1+y+xy))

= (1+xy+y)/(1+xy+y)

=1

Hope it may help you.

Amit Shukla

Answered December 2, 2017

(1+x+y^-1)^-1+(1+y+z^-1)^-1+(1+z+x^-1)^-1

={y/(y+xy+1)}+{z/(z+yz+1)}+{x/(x+zx+1)}

Putting y=1/zx

1/(1+x+zx)+zx/(zx+1+x)+x/(x+zx+1)

= (1+x+zx)/(1+x+zx)

=1

Similar questions