Math, asked by topposandhya146, 1 month ago

Prove that
1. 1- cos² O = sin² 0.​

Answers

Answered by ripinpeace
13

Step-by-step explanation:

To prove -

  • 1- cos² O = sin² 0

Proof -

  • sin²∅ + cos²∅ = 1 (identity)

sin²∅ = 1 - cos²∅ , hence proved

Answered by Ganesh094
2

Answer:

Let a, b, c be lengths of right angled triangle

⟼ By definition

\sinθ =  \frac{b}{c} ( \frac{opposite \: side}{hypotenuse} )

\cosθ =  \frac{a}{c} ( \frac{adjacent \: side}{hypotenuse} )

  \sin^{2} θ +  \cos ^{2} θ =  \frac{ {b}^{2} }{ {c}^{2} }  +   \frac{ {a}^{2} }{ {c}^{2} }  =  \frac{ {a}^{2} +  {b}^{2}  }{ {c}^{2} }

⟼ From Phythagoras theorem

{c}^{2}  =  {a}^{2}  +  {b}^{2}  \\  \frac{ {a}^{2}  +  {b}^{2} }{ {c}^{2} }  = 1 \\  \sin^{2}θ  +  \cos^{2}θ  = 1 \\ •°• 1 -  \cos ^{2} θ =    \sin^{2} θ

⟼ Hence Proved

Similar questions