Math, asked by PrasheekSable, 1 year ago

prove that 1/1-cosA + 1/1+cos A = 2 cosec× cosec A

Attachments:

Answers

Answered by SillySam
10
Heya mate, Here is ur answer

 \frac{1}{1 - cos \: a}  +  \frac{1}{1 + cos \: a}


Taking LCM


 \frac{1 + cos \: a + 1 - cosa}{(1 - cos \: a)(1 + cos \:) }

Using identity (a-b)(a+b)=a^2 -b^2

 \frac{2}{1 {}^{2}  - cos {}^{2} \: a }

 \frac{2}{1 - cos {}^{2} \: a }


Now, we know,

sin^2 A+ cos ^2 A=1

sin^2 A=1-cos^2 A

So ,

 =  \frac{2}{sin {}^{2} a}


 = 2 \times  \frac{1}{sin \: a}  \times  \frac{1}{sin \: a}


We know that 1/Sin A = cosec A

 = 2 \times cosec \: a \:  \times cosec \: a


 = 2 {cosec}^{2} a


Hence proved

========================

Warm regards

@Laughterqueen

Be Brainly ✌✌
Similar questions