prove that( 1/1+p+q^-1)+(1/1+q+r^-1)+(1/1+r+p^-1)=1 if pqr=1
Answers
Answered by
4
Answer:
LHS = 1/[1 + p + q⁻¹] + 1/[1 + q + r⁻¹] + 1/[1 + r + p⁻¹]
1/[1 + p + q⁻¹] = 1/[1 + p + 1/q] = q/ [q + pq + 1] -------(1)
1/[1 + q + r⁻¹] = 1/[1 + q + 1/r ]
= 1/[1 + q + pqr/r ] {from pqr = 1}
= 1/[1 + q + pq] = 1/[q + pq + 1] --------(2)
1/[1 + r + p⁻¹] = pqr/[pqr + r + pqr/p]
= pqr/[pqr + r + qr] = pq/[pq + 1 + q] ------(3)
Add equations (1), (2) and (3)
q[1 + pq + q] + 1/[q + pq + 1] + PQ/[pq + 1 + q]
= [1 + pq + q]/[1 + pq + q] = 1
Hence , LHS = RHS proved
Similar questions