Math, asked by esportsnetworktamil, 1 month ago

prove that 1 / 1-sin + 1 / 1+sin = 2sec^2 ​

Answers

Answered by Anonymous
25

\large\sf\underline{Given\::}

  • \sf\:\frac{1}{1-Sin θ} + \frac{1}{1+Sin θ} = 2 Sec^2 θ

\large\sf\underline{To\::}

  • Prove LHS = RHS

\large\sf\underline{Solution\::}

  • Taking LHS

\sf\:\frac{1}{1-Sin θ} + \frac{1}{1+Sin θ}

  • LCM of (1-Sin θ) and (1 + Sin θ)

\sf\implies\:\frac{(1 + Sin θ) + (1 - Sin θ) }{(1-Sin θ)(1+Sin θ)}

  • Opening the brackets

\sf\implies\:\frac{1 + Sin θ + 1 - Sin θ}{(1-Sin θ)(1+Sin θ)}

  • Cancelling the same terms with opposite signs

\sf\implies\:\frac{1 +\cancel{ Sin θ} + 1 -\cancel{ Sin θ}}{(1-Sin θ)(1+Sin θ)}

\sf\implies\:\frac{1 + 1 }{(1-Sin θ)(1+Sin θ)}

\sf\implies\:\frac{2 }{(1-Sin θ)(1+Sin θ)}

  • Using algebraic identity in the denominator

Identity : \small{\underline{\boxed{\mathrm\pink{(a+b)(a-b)=a^{2} - b^{2}}}}}

\sf\implies\:\frac{2 }{(1)^{2}- (Sin θ)^{2}}

\sf\implies\:\frac{2 }{1- Sin^{2}θ}

We know :

  • \tt\green{\:1-Sin^{2} θ= Cos^{2} θ}

\sf\implies\:\frac{2 }{Cos^{2}θ}

\sf\implies\:2 \times \frac{1 }{Cos^{2}θ}

We know :

  • \tt\green{\:\frac{1}{Cos^{2} θ}= Sec^{2}θ}

\sf\implies\:2 \times Sec^{2} θ

\sf\implies\:2 Sec^{2} θ

\sf\implies\:RHS

\large{\mathfrak\red{hence\:proved!!}}

!! Hope it helps !!

Similar questions