Math, asked by manikandan52, 14 days ago

Prove that: 1/1+sin²A + 1/1+cos²A + 1/1+sec²A + 1/1+cosec²A = 2​

Answers

Answered by AbhinavRocks10
46

\begin{gathered}\\\\\\\tt \dfrac{\sin \: \theta}{ \sec\theta + \tan\theta - 1 } + \dfrac{ \cos\theta}{\cosec\theta + \cot\theta - 1}\\\\ \end{gathered}

\begin{gathered}\tt\dfrac{\sin\theta}{\sec\theta + \tan\theta - ( {\sec}^{2}\theta - {\tan}^{2}\theta) } + \dfrac{\cos\theta}{\cosec\theta + \cot\theta - ( {\cosec}^{2}\theta - {\cot}^{2}\theta) } \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\\\ \tt \dfrac{\sin\theta}{\sec\theta + \tan\theta -( ( {\sec}\theta + \tan\theta)(\sec \theta - \tan\theta)) } + \dfrac{\cos\theta}{\cosec\theta + \cot\theta -( (\cosec\theta + \cot\theta) (\cosec\theta - \cot\theta))}\\\\\end{gathered}

\begin{gathered} \tt\dfrac{\sin\theta}{(\sec\theta + \tan\theta )(1 - (\sec\theta - \tan\theta)) } + \dfrac{\cos\theta}{(\cosec\theta + \cot\theta)(1 -(\cosec\theta - \cot\theta)) } \\\\ \tt\dfrac{\sin\theta}{(\sec\theta + \tan\theta )(1 - \sec\theta + \tan\theta) } + \dfrac{\cos\theta}{(\cosec\theta + \cot\theta)(1 - \cosec\theta + \cot\theta) } \\\\\end{gathered}

Now converting every term in sin and cos

\begin{gathered}\\\\\tt\dfrac{\sin\theta}{( \dfrac{1}{\cos \theta} + \dfrac{\sin\theta}{\cos \theta })(1 -\dfrac{1}{\cos\theta} + \dfrac{\sin\theta}{\cos\theta}) } + \dfrac{\cos\theta}{( \dfrac{1}{\sin\theta} + \dfrac{\cos\theta}{\sin\theta})(1 - \dfrac{1}{\sin\theta } + \dfrac{\cos\theta}{\sin\theta}) }\\\\\tt\dfrac{\sin\theta}{( \dfrac{1 + \sin\theta}{\cos\theta} )( \dfrac{\cos\theta - 1 + \sin\theta}{\cos\theta} ) } + \dfrac{\cos\theta}{( \dfrac{1 + \cos\theta}{\sin\theta} )( \dfrac{\sin\theta - 1 + \cos\theta}{\sin\theta} ) } \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:\\\\ \end{gathered}

\begin{gathered}\tt\dfrac{\sin\theta {\cos}^{2}\theta }{(1 + \sin\theta)(\cos\theta - 1 + \sin\theta) } + \dfrac{\cos\theta {\sin}^{2}\theta }{(1 + \cos\theta)(\sin\theta - 1 + \cos\theta) }\\ \\ \tt\dfrac{\sin\theta(1 - {\sin}^{2}\theta) }{(1 + \sin\theta)(\sin\theta + \cos\theta - 1) } + \dfrac{\cos\theta(1 - {\cos}^{2} \theta}{(1 + \cos\theta )(\sin\theta + \cos\theta - 1) }\\\\\end{gathered}

\begin{gathered}\tt\dfrac{\sin\theta(1 + \sin\theta)(1 - \sin\theta) }{(1 + \sin\theta)(\sin\theta + \cos\theta - 1) } + \dfrac{\cos\theta(1 + \cos \theta)(1 - \cos\theta)}{(1 + \cos\theta )(\sin\theta + \cos\theta - 1) }\\\\\end{gathered}

\begin{gathered}\tt\dfrac{(\sin\theta - {\sin}^{2}\theta) }{(\sin\theta + \cos\theta - 1)} + \dfrac{(\cos\theta- {\cos}^{2} \theta}{(\sin\theta + \cos\theta - 1) )}\\\\\end{gathered}

\begin{gathered}\tt\dfrac{\sin\theta+\cos\theta-{\sin}^2\theta-{\cos}^2\theta}{\sin\theta+\cos\theta-1}\\\\\end{gathered}

\begin{gathered}\tt\dfrac{\sin\theta+\cos\theta-(\sin^2\theta+\cos^2\theta)}{\sin\theta+\cos\theta-1}\\\\\end{gathered}

\begin{gathered}\\\\\tt\dfrac{\sin\theta+\cos\theta-1}{\sin\theta+\cos\theta-1}\\\\\end{gathered}

On cancelling, we get:

\begin{gathered}\\\\\tt 1\\\\\\\end{gathered}

RHS:

\begin{gathered}\\\\\\1\\\\\\\end{gathered}

LHS = RHS

\begin{gathered}\\\\\end{gathered}

Hence Proved.

Answered by ravi2303kumar
4

Step-by-step explanation:

To prove : 1/1+sin²A + 1/1+cos²A + 1/1+sec²A + 1/1+cosec²A = 2​

Take the LHS

=  1/(1+sin²A) + 1/(1+cos²A) + 1/(1+sec²A) + 1/(1+cosec²A )

=  \frac{1}{1+sin^2A} + \frac{1}{1+cos^2A} + \frac{1}{1+\frac{1}{cos^2A} }+  \frac{1}{1+\frac{1}{sin^2A} }

=  \frac{1}{1+sin^2A} + \frac{1}{1+cos^2A} + \frac{1}{(\frac{cos^2A+1}{cos^2A} )}+  \frac{1}{(\frac{sin^2A+1}{sin^2A} )}

=  \frac{1}{1+sin^2A} +  \frac{sin^2A}{sin^2A+1} + \frac{1}{1+cos^2A} + \frac{cos^2A}{cos^2A+1}

= ( \frac{1}{1+sin^2A} + \frac{sin^2A}{1+sin^2A} ) + ( \frac{1}{1+cos^2A} + \frac{cos^2A}{1+ cos^2A} )

= \frac{1+sin^2A}{1+sin^2A} + \frac{1+cos^2A}{1+ cos^2A}

= 1+1

= 2

= RHS

=> LHS = RHS

Hence proved

Similar questions