prove that : (1+1/tan square A) (1+1/ cot square A)= 1/ sin square A- sin four A
Answers
Answered by
37
hey mate
see the attachment
Attachments:
Answered by
18
(1 + (1 / tan^2 A))((1 + (1 / cot^2 A))
= ((tan^2 A / tan^2 A) + (1 / tan^2 A))((cot^2 A / cot^2 A) + (1 / cot^2 A))
= ((1+ tan^2 A) / tan^2 A)((1 + cot^2 A) / cot^2 A)
= (sec^2 A / tan^2 A)(csc^2 A / cot^2 A)
= ((1 / cos^2 A) / (sin^2 A / cos^2 A))((1 / sin^2 A) / (cos^2 A / sin^2 A))
= (1 / sin^2 A)(1 / cos^2 A)
= 1 / ((sin^2 A)(cos^2 A))
= 1 / ((sin^2 A)(1 - sin^2 A))
= 1 / (sin^2 A - sin^4 A)
=1/(sin^2A) -1/(sin^4A)
hence proved
Similar questions