prove that 1/(1+ tan² A)+1/(1+ cot² A )=1
Answers
Answered by
0
Step-by-step explanation:
Since cotx=
tanx
1
,
⇒cot
−1
x=tan
−1
x
1
So, we have,
tan
−1
a+cot
−1
(a+1)=tan
−1
a+tan
−1
a+1
1
=tan
−1
(
1−
a+1
a
a+
a+1
1
)=tan
−1
(a
2
+a+1)
Similar questions