Prove that ( 1 + 1/tan²A ) + ( 1 + 1/Cot²A ) = ( 1/Sin² A - Sin⁴A ).
Sowmyavictory1:
hi
Answers
Answered by
31
Hey !!
LHS = ( 1 + 1/tan² A ) + ( 1 + 1/Cot²A )
= ( 1 + Cot²A ) ( 1 + Tan²A )
=> Cosec²A × Sec²A
=> 1/Sin²A × 1/Cos²A
=> 1/Sin²A Cos²A
=> 1/Sin²A ( 1 - Sin²A )
=> 1/ Sin²A - Sin⁴A ) = RHS
Hence,
LHS = RHS = 1/ Sin² A - Sin⁴A .
LHS = ( 1 + 1/tan² A ) + ( 1 + 1/Cot²A )
= ( 1 + Cot²A ) ( 1 + Tan²A )
=> Cosec²A × Sec²A
=> 1/Sin²A × 1/Cos²A
=> 1/Sin²A Cos²A
=> 1/Sin²A ( 1 - Sin²A )
=> 1/ Sin²A - Sin⁴A ) = RHS
Hence,
LHS = RHS = 1/ Sin² A - Sin⁴A .
Answered by
20
Heya!!
Here's your answer!!!
_____________________________________________________________
The answer won't be equal to RHS it will be equal if the question is.
LHS
= (1+1/tan²A)(1+1/cot²A)
= ((tan²A+1)/tan²A)((cot²A+1)/cot²A)
= (sec²A/tan²A)(cosec²A/cot²A)
= (sec²A•cosec²A)/(tan²A•cot²A)
= sec²A• cosec²A
= 1/(sin²A•cos²A)
= (1/sin²A)(1/cos²A)
= (1/sin²A)(1/(1-sin²A))
= 1/(sin²-sin⁴•A)
Hence proved by LHS = RHS
____________________________________________________________
Glad help you
it helps you,
thank you ☻
@vaibhav246
Here's your answer!!!
_____________________________________________________________
The answer won't be equal to RHS it will be equal if the question is.
LHS
= (1+1/tan²A)(1+1/cot²A)
= ((tan²A+1)/tan²A)((cot²A+1)/cot²A)
= (sec²A/tan²A)(cosec²A/cot²A)
= (sec²A•cosec²A)/(tan²A•cot²A)
= sec²A• cosec²A
= 1/(sin²A•cos²A)
= (1/sin²A)(1/cos²A)
= (1/sin²A)(1/(1-sin²A))
= 1/(sin²-sin⁴•A)
Hence proved by LHS = RHS
____________________________________________________________
Glad help you
it helps you,
thank you ☻
@vaibhav246
Similar questions