Math, asked by tejal77, 1 year ago

prove that (1+1/tan²A) (1+1/cot²A) = 1/sin²A-sin⁴A​

Answers

Answered by Tomboyish44
13

Answer:

LHS = RHS

Step-by-step explanation:

LHS = [1 +\sf\dfrac{1}{tan^{2}A}] [1 + \sf\dfrac{1}{cot^{2}A}]

RHS = \sf\dfrac{1}{sin^{2}A - sin^{4}A}

Simplifying the LHS:

\longrightarrow [1 +\sf\dfrac{1}{tan^{2}A}] \ [1 + \sf\dfrac{1}{cot^{2}A}]

We know that,

\boxed{\sf{\frac{1}{tan^{2}A} = cot^{2}A}}

\boxed{\sf{\frac{1}{cot^{2}A} = tan^{2}A}}

Substituing these formulas in the equation we get,

\longrightarrow  \sf{[1 + cot^{2}A] [1 + tan^{2}A]}

We know that

\large\boxed{\sf{1 + cot^{2}A = cosec^{2}A}}

\large\boxed{\sf{1 + tan^{2}A = sec^{2}A}}

Substituing these formulas in the equation we get

\longrightarrow  \sf{[cosec^{2}A] [1 + sec^{2}A]}

We know that,

\boxed{\sf{cosec^{2}A = \dfrac{1}{sin^{2}}}}

\boxed{\sf{sec^{2}A = \dfrac{1}{cos^{2}}}}

Substituing these formulas in the equation we get

\longrightarrow  \sf\dfrac{1}{sin^{2}A} \times \dfrac{1}{cos^{2}A}

\longrightarrow  \sf\dfrac{1}{sin^{2}A \times cos^{2}}

\longrightarrow  \sf\dfrac{1}{sin^{2}A \times [1 - sinA^{2}]}

\longrightarrow  \sf\dfrac{1}{sin^{2}A - sin^{4}A}

∴ LHS = RHS

Hence Proved.


CoolestCat015: Amazing :O
Tomboyish44: Ty
Tomboyish44: :)
Answered by EmperorSoul
0

Answer:

LHS = RHS

Step-by-step explanation:

LHS = [1 +\sf\dfrac{1}{tan^{2}A}] [1 + \sf\dfrac{1}{cot^{2}A}]

RHS = \sf\dfrac{1}{sin^{2}A - sin^{4}A}

Simplifying the LHS:

\longrightarrow [1 +\sf\dfrac{1}{tan^{2}A}] \ [1 + \sf\dfrac{1}{cot^{2}A}]

We know that,

\boxed{\sf{\frac{1}{tan^{2}A} = cot^{2}A}}

\boxed{\sf{\frac{1}{cot^{2}A} = tan^{2}A}}

Substituing these formulas in the equation we get,

\longrightarrow  \sf{[1 + cot^{2}A] [1 + tan^{2}A]}

We know that

\large\boxed{\sf{1 + cot^{2}A = cosec^{2}A}}

\large\boxed{\sf{1 + tan^{2}A = sec^{2}A}}

Substituing these formulas in the equation we get

\longrightarrow  \sf{[cosec^{2}A] [1 + sec^{2}A]}

We know that,

\boxed{\sf{cosec^{2}A = \dfrac{1}{sin^{2}}}}

\boxed{\sf{sec^{2}A = \dfrac{1}{cos^{2}}}}

Substituing these formulas in the equation we get

\longrightarrow  \sf\dfrac{1}{sin^{2}A} \times \dfrac{1}{cos^{2}A}

\longrightarrow  \sf\dfrac{1}{sin^{2}A \times cos^{2}}

\longrightarrow  \sf\dfrac{1}{sin^{2}A \times [1 - sinA^{2}]}

\longrightarrow  \sf\dfrac{1}{sin^{2}A - sin^{4}A}

∴ LHS = RHS

Hence Proved.

Similar questions