Math, asked by naisha2005, 5 months ago



prove that:- 1/1+x^b-a +x^c-a + 1/ 1+x^a-b+x^c-b +1/1+x^b-c+x^a-c = 1​

Answers

Answered by Anonymous
11

SOLUTION :

 \sf \frac{1 }{1 +  {x}^{(b - a)}  +  {x}^{(c - a)} }  +  \frac{1}{1 +  {x}^{(a - b)} +  {x}^{(c - b)}  } +   \frac{1}{1 +  {x}^{(b - c)} {x}^{(a - c)}  }  \\

  = \sf \frac{ {x}^{a}  }{ {x}^{a} (1 +  {x}^{(b - a)}  +  {x}^{(c - a)} )}  +  \frac{ {x}^{b} }{ {x}^{b} (1 +  {x}^{(a - b)} +  {x}^{(c - b)} ) } +   \frac{ {x}^{c} }{ {x}^{c}( 1 +  {x}^{(b - c)} {x}^{(a - c)} ) }  \\

 \sf  =  \frac{ {x}^{a} }{ {x}^{a}  +  {x}^{b}  +  {x}^{c} }  +  \frac{ {x}^{b} }{ {x}^{b}  +  {x}^{a}  +  {x}^{c} }  +  \frac{ {x}^{c} }{ {x}^{a} +  {x}^{b}   +  {x}^{c} }  \\

 =  \sf \:  \frac{ \cancel{( {x}^{a}  +  {x}^{b} +  {x}^{c} ) }}{ \cancel{( {x}^{a} +  {x}^{b}   +  {x}^{c} })}  =1 \\

[Proved]

HOPE THIS IS HELPFUL

KEEP STUDYING AND KEEP SMILING...:)

Answered by aryan073
2

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

 \:  \bigstar \large \green { \bold{ \underline{ \underline{correct \: answer}}}}

 \:  \:   \\ \:  \:  \ggg    \bold{ \frac{1}{1 +  {x}^{b - a}  +  {x}^{c - a} }  +  \frac{1}{1 +  {x}^{a - b}  +  {x}^{c - b} } } +  \frac{1}{1 +  {x}^{b - c} +  {x}^{a - c}}

 \:  \: \bigstar \large \orange { \bold{ \underline{step \: by \: step \: explaination}}} :

LHS:

 \\   : \implies \displaystyle \sf{ \frac{1}{1 +  {x}^{b - a} +  {x}^{c - a}  }  +  \frac{1}{1 +  {x}^{a - b}  +  {x}^{c - b} }  +  \frac{1}{1 +  {x}^{b - c}  +  {x}^{a - c} } }

 \:   \\  :  \implies \displaystyle \sf{ \frac{1}{1 +  {x}^{ \frac{b}{a} }  +  {x}^{ \frac{c}{a} } }  +  \frac{1}{1 +  {x}^{ \frac{a}{b} } +  {x}^{ \frac{c}{b} }  }  +  \frac{1}{1 +  {x}^{ \frac{b}{c} }  +  { x }^{ \frac{a}{c} } } }

 \:  \\   : \implies \displaystyle \sf{ \frac{1}{1 +  \frac{ {x}^{b} }{ {x}^{a} } +  \frac{ {x}^{c} }{ {x}^{a} }  }  +    \frac{1}{1 +   \frac{ {x}^{a} }{ {x}^{b} } +  \frac{ {x}^{c} }{ {x}^{b} } }}  +  \frac{1}{1 +  \frac{ {x}^{a} }{ {x}^{c} }  +  \frac{ {x}^{b} }{ {x}^{c} } }

 \:  \:   \\ : \implies  \displaystyle \sf{ \frac{ {x}^{a} }{ {x}^{a} +  {x}^{b}  +  {x}^{c}  }  +  \frac{ {x}^{b} }{ {{x}^{a} } +  {x}^{b}   +  {x}^{c} }} +  \frac{ {x}^{c} }{ {x}^{a} +  {x}^{b}   +  {x}^{c} }

 \:  \\  :  \implies { \displaystyle \sf{  \frac{ {x}^{a} +  {x}^{b}  +  {x}^{c}  }{ {x}^{a}  +  {x}^{b} +  {x}^{c}  } }}

 \:  \:  \:   \\  :  \implies \displaystyle \sf{ \cancel \frac{ {x}^{a}  +  {x}^{b}  +  {x}^{c} }{ {x}^{a} +  {x}^{b}  +  {x}^{c}  }  = 1}

Rhs =1

LHS =RHS, Hence proved

 \:  \bigstar  \displaystyle \bf{ \frac{1}{1 +  {x}^{b - a} +  {x}^{c - a}  } } +  \frac{1}{1 +  {x}^{a - b}  +  {x}^{c - b} }  +  \frac{1}{1 +  {x}^{b - c}  +  {x}^{a - c} }  = 1

 \clubsuit   \boxed{ \bf{ \frac{1}{1 +  {x}^{b - a}  +  {x}^{c - a} }  +  \frac{1}{1 +  {x}^{a - b}  +  {x}^{c - b} }  +  \frac{1}{1 +  {x}^{b - c}  +  {x}^{a - c} } = 1 }}

Similar questions