Math, asked by Ashrithag, 6 months ago

prove that 1^2+3^2+5^2+......+(2n-1)^2n(2n-1)(2n+1)/3​

Answers

Answered by rangapranav
1

Answer:

Step-by-step explanation:

1  

2

+3  

2

+5  

2

...+(2n−1)  

2

=  

3

n(2n−1)(2n+1)

​  

∀n∈N

PROOF:

P(n)=1  

2

+3  

2

+5  

2

...+(2n−1)  

2

=  

3

n(2n−1)(2n+1)

​  

 

P(1):(2×1−1)  

2

=  

3

1(2−1)(2+1)

​  

 

⇒(1)  

2

=1=  

3

1×1×3

​  

=1

∴ L.H.S=R.H.S (Proved)

∴P(1) is true.

Now, let P(m) is true.

Then, P(m)=1  

2

+3  

2

+5  

2

...+(2m−1)  

2

=  

3

m(2m−1)(2m+1)

​  

 

Now, we have to prove that P(m+1) is also true.

P(m+1)=1  

2

+3  

2

+5  

2

...+(2m−1)  

2

+[2(m+1)−1]  

2

 

=P(m)+(2m+2−1)  

2

 

=P(m)+(2m+1)  

2

 

=  

3

m(2m−1)(2m+1)

​  

+(2m+1)  

2

 

=  

3

m(2m−1)(2m+1)+3(2m+1)  

2

 

​  

 

=  

3

(2m+1)[m(2m−1)+3(2m+1)]

​  

 

=  

3

(2m+1)[2m  

2

−m+6m+3]

​  

 

=  

3

(2m+1)[2m  

2

+5m+3]

​  

 

=  

3

(2m+1)[2m  

2

+2m+3m+3]

​  

 

=  

3

(2m+1)[2m(m+1)+3(m+1)]

​  

 

=  

3

(2m+1)(2m+3)(m+1)

​  

 

=  

3

(m+1)[2(m+1)+1][2(m+1)−1]

​  

 

∴p(m+1) is also true (Proved) pls mark me as brainliest

Similar questions