Math, asked by Sansh3cournima, 1 year ago

Prove that (1/2+√3) + (2/√5-√3)+( 1/2-√5)=0

Answers

Answered by ARoy
188
(1/2+√3)+(2/√5-√3)+(1/2-√5)
=1(2-√3)/(2-√3)(2+√3)+2(√5+√3)/(√5+√3)(√5-√3)+1(2+√5)/(2+√5)(2-√5)
=(2-√3)/{2²-(√3)²}+2(√5+√3)/{(√5)²-(√3)²}+(2+√5)/{2²-(√5)²}
=(2-√3)/(4-3)+2(√5+√3)/(5-3)+(2+√5)/(4-5)
=2-√3+{2(√5+√3)/2}-(2+√5)
=2-√3+√5+√3-2-√5
=0 (Proved)
Answered by samuelWilson
39

Answer:(1/2+√3)+(2/√5-√3)+(1/2-√5)

=1(2-√3)/(2-√3)(2+√3)+2(√5+√3)/(√5+√3)(√5-√3)+1(2+√5)/(2+√5)(2-√5)

=(2-√3)/{2²-(√3)²}+2(√5+√3)/{(√5)²-(√3)²}+(2+√5)/{2²-(√5)²}

=(2-√3)/(4-3)+2(√5+√3)/(5-3)+(2+√5)/(4-5)

=2-√3+{2(√5+√3)/2}-(2+√5)

=2-√3+√5+√3-2-√5

=0

Hence,Proved

Step-by-step explanation:

Similar questions