Math, asked by Anonymous, 5 months ago

Prove that , 1 + 2 + 3 + 4 + _____+ ∞ = -1/12

( Ramanujan's Summation to Infinity Theory . ) ​

Answers

Answered by BrainlyPopularman
18

TO PROVE :

  \\ \bf \implies1 + 2 + 3 + 4 +. . . . . . +  \infty  =  -  \dfrac{1}{12}  \\

SOLUTION :

• Let a series –

  \\ \bf \implies S_1 =1 - 1 + 1 - 1 + . . . . . .  \\

• If number of terms are Even

  \\ \bf \implies S_1 =0 \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \: \:  -  -  - eq.(1)\\

• If number of terms are odd

  \\ \bf \implies S_1 =1 \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \: \:  -  -  - eq.(2)\\

• Now add eq.(1) & eq.(2) –

  \\ \bf \implies S_1  +S_1=0 + 1\\

  \\ \bf \implies 2S_1=1\\

  \\ \large \bf\implies {\boxed{ \bf S_1= \dfrac{1}{2}}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  -  -  - eq.(3)\\

• Now let's take another series –

  \\ \bf \implies S_2=1 -2+3-4 + . . . . . .  \\

• Add S₂ in S₂ after shifting one term –

 \green{ \implies}  \sf{\red{S_2 = 1 - 2 + 3 + 4 + - - - - }} \\ \qquad \:  \:   \underline{\sf{\red{S_2 = \quad \quad 1 - 2 + 3 - - - }}} \\  \qquad \:  \: \underline{  \sf{\red{ S_2 = 1 - 1 + 1 - 1 + - - - - }}}

  \\ \bf \implies 2S_2=1 -1+1-1 + . . . . . .  \\

  \\ \bf \implies 2S_2=S_1\\

• By using eq.(3) –

  \\ \bf \implies 2S_2= \dfrac{1}{2} \\

  \\ \large \bf\implies { \boxed{ \bf S_2= \dfrac{1}{4} }} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  -  -  -  - eq.(4)\\

• Now let's take required equation –

  \\ \bf \implies S_3=1 + 2 +3 + 4 + . . . . . .  \\

• Subtract S₃ from S₂

\green{ \implies}  \sf{\red{S_3 = 1  +  2 + 3 + 4 + - - - - }} \\ \qquad \:  \:   \sf{\red{S_2 =  1 -2 + 3 - 4 +  - - - }}  \\  \:    \underline{ \sf{ \red{ \qquad\:   - \quad \:  \:  - \:  \:   + \:  \:   -  \:  \:  + \:  \:   -  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }}}\\   \:  \: \underline{  \sf{\red{ S_3 - S_2 = 4 + 8 + 12 + - - - - }}}

  \\ \bf \implies S_3 -S_2=4  + 8 + 12+ . . . . . . \\

  \\ \bf \implies S_3 -S_2=4(1 + 2 + 3 + 4 + . . . . . . ) \\

  \\ \bf \implies S_3 -S_2=4(S_3)\\

  \\ \bf \implies  -S_2=4(S_3) -S_3\\

• Using eq.(4) –

  \\ \bf \implies  3(S_3) =  -  \dfrac{1}{4} \\

  \\ \bf \implies S_3 =  -  \dfrac{1}{12} \\

  \\ \large \implies{\boxed{\bf 1 + 2 + 3 + 4 + . . . . . .  =  -  \dfrac{1}{12}}} \\

  \\ \large \implies{\boxed{\bf Hence \:  \: Proved}} \\


BrainlyHero420: Perfect bro :)
Anonymous: Awesome ( ╹▽╹ )
BrainlyPopularman: Thanks
Similar questions