prove that 1 - 2 cos square X = tan Square X - 1 / tan Square X + 1
Answers
||✪✪ QUESTION ✪✪||
1 - 2cos²x = (tan²x - 1) / (tan²x + 1)
|| ✰✰ ANSWER ✰✰ ||
Taking LHS, we get,
→ (tan²x - 1) / (tan²x + 1)
Putting Tanx = sinx/cosx now,
→ (sin²x/cos²x) - 1/ (sin²x/cos²x) + 1 =
→ [ (sin²x - cos²x)/cos²x ] /[ ( sin²x + cos²x ) / cos²x ]
→ sin²x - cos²x /sin²x + cos²x
putting sin²x - cos²x = 1 in Denominator now,
→ sin²x - cos²x
Taking (-1) common now,
→ (-1)(cos²x - sin²x)
Putting cos²x - sin²x = cos2x now,
→ (-1) * cos2x
Putting cos2x = 2cos²x - 1 now,
→ (-1)(2cos²x - 1)
→ 1 - 2cos²x = ❁❁ RHS ❁❁
✪✪ Hence Proved ✪✪
Prove that 1 - 2 cos² X = tan² X - 1 / tan² X + 1
By taking LHS, we get :-
Putting substituting value of Tan x = sin x / cos x
= (sin²x/cos²x) - 1/ (sin²x/cos²x) + 1
= [ (sin²x - cos²x)/cos²x ] /[ ( sin²x + cos²x ) / cos²x ]
= sin²x - cos²x /sin²x + cos²x
•°• putting sin²x - cos²x = 1 in Denominator
________________( sin²x - cos²x = 1)
= sin²x - cos²x
Now taking - 1 common from the above eqn
= (-1) × (cos²x - sin²x)
Now by substituting the known value cos²x - sin²x = cos2x
= (-1) × cos2x
Now by substituting the known value cos2x = 2cos²x - 1
= (-1)(2cos²x - 1)
= 1 - 2cos²x