prove that 1 / 2 + root 3 + 2 / root 5 minus root 3 + 1 / 2 minus root 5 is equals to zero
Answers
Answered by
1
The given equation is:
\frac{1}{2+\sqrt{3}}+\frac{2}{\sqrt{5}-\sqrt{3}}+\frac{1}{2-\sqrt{5}}
After rationalising the above equation, we get
=\frac{2-\sqrt{3}}{4-3}+\frac{2\sqrt{5}+2\sqrt{3}}{5-3}+\frac{2+\sqrt{5}}{4-5}
=2-\sqrt{3}+\sqrt{5}+\sqrt{3}-2-\sqrt{5}
=0
Hence proved.
Similar questions