Math, asked by sanjusanjana2601, 1 month ago

prove that 1/2+ root 3 + 2/root t - root 3 + 1/2- root 5​

Answers

Answered by Anonymous
37

Topic :-

Surds

Correct Question :-

Prove that :-

 \dfrac{1}{2 +  \sqrt{3} }  +  \dfrac{2}{ \sqrt{5}  -  \sqrt{3} }  +  \dfrac{1}{2 -  \sqrt{5} }  = 0

SOLUTION:-

Take L.C.M to the denominator

 \dfrac{1( \sqrt{5} -  \sqrt{3} )(2 -  \sqrt{5}) + 2(2 +  \sqrt{3})(2 -  \sqrt{5} ) + (2 +  \sqrt{3} )( \sqrt{5 }  -  \sqrt{3} )   }{(2 +  \sqrt{3})( \sqrt{5}  -  \sqrt{3}  )(2 -  \sqrt{5}) }

 \dfrac{2 \sqrt{5} - 5 - 2 \sqrt{3}  +  \sqrt{15}  + 2(4 - 2 \sqrt{5} + 2 \sqrt{3}   -  \sqrt{15} ) + 2 \sqrt{5} - 2 \sqrt{3}  +  \sqrt{15} - 3   }{(2 +  \sqrt{3} )( \sqrt{5}  -  \sqrt{3})(2 -  \sqrt{5} ) }

Keeping the like terms together in the numerator

 \dfrac{2 \sqrt{5} + 2 \sqrt{5}  - 4 \sqrt{5}   - 2 \sqrt{3}  - 2 \sqrt{3}  + 4 \sqrt{3} +  \sqrt{15} +  \sqrt{15} - 2 \sqrt{15}   - 5 - 3  + 8 }{(2 +  \sqrt{3})( \sqrt{5 }   -  \sqrt{3})(2 -  \sqrt{5})  }

 \dfrac{4 \sqrt{5} - 4 \sqrt{5} - 4 \sqrt{3}  + 4 \sqrt{3}  + 2 \sqrt{15}  - 2 \sqrt{15}   - 8 + 8 }{(2 +  \sqrt{3})( \sqrt{5} -  \sqrt{3} )(2 -  \sqrt{5} )  }

All terms get cancelled in the numerator

 \dfrac{0}{(2 +  \sqrt{3} )( \sqrt{5 } -  \sqrt{3} )(2 -  \sqrt{5} ) }

 = 0

Hence proved!

So,

 \dfrac{1}{2 +  \sqrt{3} }  +  \dfrac{2}{ \sqrt{5}  -  \sqrt{3} }  +  \dfrac{1}{2 -  \sqrt{5} }  = 0

Note :-

If you are confusion to seè the answer .Kindly refer the attachment

Attachments:
Similar questions