prove that 1/2+root3+2/root5-root3+1/2-root5=0
Answers
Answered by
2
Given, 1/(2 + √3) + 2/(√5 - √3) + 1/(2 - √5)
After rationalizing each term, we get
= [{1*(2 - √3)}/{(2 + √3)*(2 - √3)}] + [{2*(√5 + √3)}/{(√5 - √3)*(√5 + √3)}] + [{1*(2 + √5)}/{(2 + √5)*(2 - √5)}]
= (2 - √3)/(4 - 3) + {2*(√5 + √3)}/(5 - 3) + (2 + √5)/(4 - 5)
= (2 - √3) + {2*(√5 + √3)}/2 + (2 + √5)/(-1)
= (2 - √3) + (√5 + √3) - (2 + √5)
= 2 - √3 + √5 + √3 - 2 - √5
= 0
So, 1/(2 + √3) + 2/(√5 - √3) + 1/(2 - √5) = 0
Hope it helps
Mark it as the brainliest one
Answered by
2
Answer:
here is your need ...
ans will be zero hope it helps you.... if u cant understnd any step thn surely ask me ur doubts in my questions ....
stay safe
Attachments:
Similar questions