Math, asked by ritikrish2020, 1 month ago

prove that 1/3 (cos³a sin3a+ sin³acos3a) = 1/4 sin4a

solve it!! and get points..!!​

Answers

Answered by lovingrathour
3

FORMULAS USED:

cos³A = (cos3A + 3cosA)/4

sin³A = (3sinA - sin3A)/4

sinA*cosB + cosA*sinB = sin(A+B)

_______________________

↪ (1/3) [ cos³A×sin3A + sin³A×cos3A ]

↪ (1/3)[[{(cos3A + 3cosA)/4} ×sin3A] + [{(3SinA - Sin3A)/4} ×cos3A ]]

↪ (1/3×4) [(cos3A + 3cosA)×sin3A + (3SinA - Sin3A)×cos3A]

↪ (1/3×4) [ (cos3A×in3A + 3cosA×sin3A) + (3sinA×cos3A - sin3A×cos3A) ]

↪(1/3×4) [ cos3A×sin3A - sin3A×cos3A + 3(cosA×sin3A + sinA×cos3A) ]

↪ (1/3×4) [ 3(cosA×sin3A + sinA×cos3A) ]

↪ (1/4)[ (cosA×sin3A + sinA×cos3A) ]

↪ (1/4)[ sin(A + 3A) ]

↪ 1(/4) × sin4A

Answered by RvChaudharY50
1

Given :- prove that 1/3 (cos³a sin3a+ sin³acos3a) = 1/4 sin4a ?

Solution :-

solving LHS,

→ 1/3 (cos³a * sin 3a+ sin³a * cos 3a)

putting :-

  • cos³a = (cos 3a + 3cos a)/4
  • sin³a = (3sin a - sin 3a)/4

→ (1/3)[(cos 3a + 3cos a)/4 * sin 3a + ((3sin a - sin 3a)/4 * cos 3a)]

taking (1/4) common,

→ (1/12)[cos 3a * sin 3a + 3cos a * sin 3a + 3sin a * cos 3a - sin 3a * cos 3a]

sin 3a * cos 3a will be cancel ,

→ (1/12)[3cos a * sin 3a + 3sin a * cos 3a]

taking 3 common now,

→ (1/4)[cos a * sin 3a + sin a * cos 3a]

using :-

  • sin(A + B) = sinA * cosB + cosA * sinB

→ (1/4) * sin(3a + a)

(1/4)sin 4a = RHS (Proved)

Learn more :-

prove that cosA-sinA+1/cos A+sinA-1=cosecA+cotA

https://brainly.in/question/15100532

help me with this trig.

https://brainly.in/question/18213053

Similar questions