Math, asked by nethraeval, 5 hours ago

prove that 1/3 - root 8- 1/ root 8-root 7 + 1/ root 7 - root 6 -1root 6 - root 5 + 1/ root 5 -2 =5​

Answers

Answered by amanraj143
0

Step-by-step explanation:

lhs=  \frac{1}{3 -  \sqrt{8} }  -  \frac{1}{ \sqrt{8} -  \sqrt{7}  }  +  \frac{1}{ \sqrt{7}  -  \sqrt{6} }  -  \frac{1}{ \sqrt{6}  -  \sqrt{5} }  +  \frac{1}{ \sqrt{5}  - 2}  = </p><p>3 +  \sqrt{8}  -  \sqrt{8}  -  \sqrt{7}  +  \sqrt{7 }  +  \sqrt{6}  -  \sqrt{6}  -  \sqrt{5}  +  \sqrt{5}   + 2 </p><p>= 3 + 2 = 5 \\</p><p> rhs = 5 \\  \\ lhs = rhs \\hence \: verified

Answered by Renumahala2601
2

Answer:

Step-by-step explanation:</p><p></p><p>\begin{gathered}lhs= \frac{1}{3 - \sqrt{8} } - \frac{1}{ \sqrt{8} - \sqrt{7} } + \frac{1}{ \sqrt{7} - \sqrt{6} } - \frac{1}{ \sqrt{6} - \sqrt{5} } + \frac{1}{ \sqrt{5} - 2} = &lt; /p &gt; &lt; p &gt; 3 + \sqrt{8} - \sqrt{8} - \sqrt{7} + \sqrt{7 } + \sqrt{6} - \sqrt{6} - \sqrt{5} + \sqrt{5} + 2 &lt; /p &gt; &lt; p &gt; = 3 + 2 = 5 \\ &lt; /p &gt; &lt; p &gt; rhs = 5 \\ \\ lhs = rhs \\hence \: verified\end{gathered}lhs=3−81−8−71+7−61−6−51+5−21=&lt;/p&gt;&lt;p&gt;3+8−8−7+7+6−6−5+5+2&lt;/p&gt;&lt;p&gt;=3+2=5&lt;/p&gt;&lt;p&gt;rhs=5lhs=rhshenceverified</p><p></p><p>

Mark it as brainliest please

Similar questions