Math, asked by SuNsHiNe2143, 1 month ago

prove that (1)/(3+sqrt(7))+(1)/(sqrt(7)+sqrt(5))+(1)/(sqrt(5)+sqrt(3))+(1)/(sqrt(3)+1)=1

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\dfrac{1}{3 +  \sqrt{7} }  + \dfrac{1}{ \sqrt{7}  +  \sqrt{5} }  + \dfrac{1}{ \sqrt{5}  +  \sqrt{3} }  + \dfrac{1}{ \sqrt{3}  + 1}

Consider,

\red{\rm :\longmapsto\:\dfrac{1}{3 +  \sqrt{7} }}

On rationalizing the denominator, we get

\rm \:  =  \:  \: \dfrac{1}{3 +  \sqrt{7} }  \times \dfrac{3 -  \sqrt{7} }{3 -  \sqrt{7} }

\rm \:  =  \:  \: \dfrac{3 -  \sqrt{7} }{ {(3)}^{2}  -  {( \sqrt{7} )}^{2} }

\red{\bigg \{ \because \:(x + y)(x - y) =  {x}^{2} -  {y}^{2} \bigg \}}

\rm \:  =  \:  \: \dfrac{3 -  \sqrt{7} }{9 - 7}

\rm \:  =  \:  \: \dfrac{3 -  \sqrt{7} }{2}

\red{\bf :\longmapsto\:\dfrac{1}{3 +  \sqrt{7} }   =  \:  \: \dfrac{3 -  \sqrt{7} }{2} -  -  - (1)}

Consider,

\green{\rm :\longmapsto\:\dfrac{1}{ \sqrt{7}  +  \sqrt{5} }}

On rationalizing the denominator, we get

\rm \:  =  \:  \: \dfrac{1}{ \sqrt{7}  +  \sqrt{5} }  \times \dfrac{ \sqrt{7} -  \sqrt{5}  }{ \sqrt{7}  -  \sqrt{5} }

\rm \:  =  \:  \: \dfrac{ \sqrt{7} -  \sqrt{5}  }{ {( \sqrt{7} )}^{2} -  {( \sqrt{5} )}^{2}  }

\rm \:  =  \:  \: \dfrac{ \sqrt{7}  -  \sqrt{5} }{7 - 5}

\rm \:  =  \:  \: \dfrac{ \sqrt{7}  -  \sqrt{5} }{2}

\green{\bf :\longmapsto\:\dfrac{1}{ \sqrt{7}  -  \sqrt{5} }   =  \:  \: \dfrac{ \sqrt{7}  -  \sqrt{5} }{2}  -  -  - (2)}

Consider,

\blue{\rm :\longmapsto\:\dfrac{1}{ \sqrt{5}  +  \sqrt{3} }}

On rationalizing the denominator, we get

\rm \:  =  \:  \: \dfrac{1}{ \sqrt{5} +  \sqrt{3}  }  \times \dfrac{ \sqrt{5}  -  \sqrt{3} }{ \sqrt{5} -  \sqrt{3}  }

\rm \:  =  \:  \: \dfrac{ \sqrt{5}  -  \sqrt{3} }{ {( \sqrt{5} )}^{2} -  {( \sqrt{3}) }^{2}  }

\rm \:  =  \:  \: \dfrac{ \sqrt{5}  -  \sqrt{3} }{5 - 3}

\rm \:  =  \:  \: \dfrac{ \sqrt{5}  -  \sqrt{3} }{2}

\blue{\bf :\longmapsto\:\dfrac{1}{ \sqrt{5}  +  \sqrt{3} } =  \:  \: \dfrac{ \sqrt{5}  -  \sqrt{3} }{2}  -  -  - (3)}

Consider,

\purple{\rm :\longmapsto\:\dfrac{1}{ \sqrt{3}  + 1}}

On rationalizing the denominator, we get

\rm \:  =  \:  \: \dfrac{1}{ \sqrt{3}  + 1}  \times \dfrac{ \sqrt{3} - 1 }{ \sqrt{3}  - 1}

\rm \:  =  \:  \: \dfrac{ \sqrt{3}  - 1}{ {( \sqrt{3} )}^{2} -  {1}^{2}  }

\rm \:  =  \:  \: \dfrac{ \sqrt{3}  - 1}{3 - 1}

\rm \:  =  \:  \: \dfrac{ \sqrt{3}  - 1}{2}

\purple{\bf :\longmapsto\:\dfrac{1}{ \sqrt{3}  + 1} =  \:  \: \dfrac{ \sqrt{3}  - 1}{2} -  -  - (4)}

Now, Consider

 \pink{\rm :\longmapsto\:\dfrac{1}{3 +  \sqrt{7} }  + \dfrac{1}{ \sqrt{7}  +  \sqrt{5} }  + \dfrac{1}{ \sqrt{5}  +  \sqrt{3} }  + \dfrac{1}{ \sqrt{3}  + 1} }

On substituting the values evaluated in above steps, we get

\rm \:  =  \:  \: \dfrac{3 -  \sqrt{7} }{2}  + \dfrac{ \sqrt{7}  -  \sqrt{5} }{2}  + \dfrac{ \sqrt{5}  -  \sqrt{3} }{2}  + \dfrac{ \sqrt{3}  - 1}{2}

\rm \:  =  \:  \: \dfrac{3 -  \sqrt{7}  +  \sqrt{7}  -  \sqrt{5}  +  \sqrt{5}  -  \sqrt{3}  +  \sqrt{3} - 1 }{2}

\rm \:  =  \:  \: \dfrac{3 - 1}{2}

\rm \:  =  \:  \: \dfrac{2}{2}

\rm \:  =  \:  \: 1

Hence, Proved

Answered by abhaymahar398
0

Answer:

opopiosuzyzhzjzsi7syshsjsa8-%-^@€×98×

Similar questions