Math, asked by divyaasharma00, 1 year ago

Prove that 1 + 3C, + 4c2 = 5C3​

Answers

Answered by rishu6845
2

Step-by-step explanation:

plzz give me brainliest ans and plzzzz follow me

Attachments:
Answered by pulakmath007
0

1 + ³C₁ + ⁴C₂ = ⁵C₃ is proved

Given :

The expression 1 + ³C₁ + ⁴C₂ = ⁵C₃

To find :

To prove the expression

Solution :

Step 1 of 3 :

Simplify LHS

LHS

\displaystyle \sf{  = 1 +  {}^{3}C_1 +  {}^{4}C_2   }

\displaystyle \sf{  =1 +   \frac{3!}{1!(3 - 1)!}  +  \frac{4!}{2!(4 - 2)!}  }

\displaystyle \sf{  =1 +   \frac{3!}{1! \: 2!}  +  \frac{4!}{2! \: 2!}  }

\displaystyle \sf{  =1 +   \frac{3 \times 2!}{1! \: 2!}  +  \frac{4 \times 3 \times 2!}{2! \: 2!}  }

\displaystyle \sf{  =1 + 3 +  \frac{12}{2} }

\displaystyle \sf{  =1 + 3 + 6 }

\displaystyle \sf{  =1 0}

Step 2 of 3 :

Simplify the RHS

RHS

\displaystyle \sf{   =  {}^{5}C_3}

\displaystyle \sf{  } =  \frac{5!}{3! \: (5 - 3)!}

\displaystyle \sf{  } =  \frac{5!}{3! \:2!}

\displaystyle \sf{  } =  \frac{5 \times 4 \times 3!}{3! \:2!}

\displaystyle \sf{  } =  \frac{5 \times 4 }{2!}

\displaystyle \sf{  } =  \frac{5 \times 4 }{2}

\displaystyle \sf{  } = 10

Step 3 of 3 :

Prove the expression

We see that LHS = RHS

Hence the proof follows

Similar questions