prove that (1+8/√2)^⁸+(1-i/√2)^8=2
Answers
Answered by
4
Answer:
Option 1
Convert to polar form r(cos θ + i sin θ).
Since cos(π/4) = sin(π/4) = 1/√2, this gives
- (1 + i)/√2 = cos(π/4) + i sin(π/4)
- (1 - i)/√2 = cos(π/4) - i sin(π/4)
De Moivre's formula says that (cos θ + i sin θ)ⁿ = cos(nθ) + i sin(nθ). So...
- [(1 + i)/√2]⁸ = cos(2π) + i sin(2π) = 1
- [(1 - i)/√2]⁸ = cos(2π) - i sin(2π) = 1
Therefore...
- [(1 + i)/√2]⁸ + [(1 - i)/√2]⁸ = 1 + 1 = 2
Option 2
By the Binomial Theorem,
- (1 + x)⁸ = 1 + 8x + 28x² + 56x³ + 70x⁴ + 56x⁵ + 28x⁶ + 8x⁷ + x⁸
- (1 - x)⁸ = 1 - 8x + 28x² - 56x³ + 70x⁴ - 56x⁵ + 28x⁶ - 8x⁷ + x⁸
so...
- (1 + x)⁸ + (1 - x)⁸ = 2(1 + 28x² + 70x⁴ + 28x⁶ + x⁸).
Then...
[(1 + i)/√2]⁸ + [(1 - i)/√2]⁸
= (1/√2)⁸ × [ (1 + i)⁸ + (1 - i)⁸ ]
= (1/16) × 2(1 + 28i² + 70i⁴ + 28i⁶ + i⁸)
= (1/8) × (1 - 28 + 70 - 28 + 1)
= (1/8) × 16
= 2
Answered by
1
Answer:
jjvjhdjtyuikgfgbnkkigrwqfhjmjvbbnbmjhddfeqqdhhjķghhklkkjhtftiu
Similar questions