prove that
| 1 a²+bc a³|
| 1 b²+ac b³| = (a-b)(b-c)(c-a)(a²+b²+c²)
| 1 c²+ab c³|
Answers
Answered by
1
Answer:
hhhiii
Step-by-step explanation:
LHS =
C₁ → C₁ - C₂ & C₂ → C₂ - C₃
=
=
Taking (a - b) common from C₁ & b -c from C₂
=
C₂ → C₂ - C₁
=
c²-a² +bc - ab = (c + a)(c - a) + b(c - a) = (c -a)(a + b + c)
=
Taking common c - a from C₂
=
= (a - b)(b - c)(c-a) ( 0 - 0 + 1 ( a +b)(a+b+c) - (a² + b² + ab) * 1 )
=(a - b)(b - c)(c-a) ( a² + ab + ac + ab + b² + bc- (a² + b² + ab) * 1 )
= (a - b)(b - c)(c-a) (ab + bc + ca)
= RHS
QED
Hence Proved
Similar questions