Prove that
1 + cos 0/
1 - cos
= ( cosec 0 + coto) square
Answers
Answer:
Step-by-step explanation:
cotθ−cscθ+1
cotθ+cscθ−1
=
cotθ−cscθ+1
cotθ+cscθ−(csc
2
θ−cot
2
θ)
=
cotθ−cscθ+1
cotθ+cscθ−(cscθ−cotθ)(cscθ+cotθ)
=
cotθ−cscθ+1
(cotθ+cscθ)(1−cscθ+cotθ)
=cotθ+cscθ .........Result1
=
sinθ
cosθ
+
sinθ
1
=
sinθ
1+cosθ
.........Result2
Hence from result1 and result2 we have
cotθ−cscθ+1
cotθ+cscθ−1
=cotθ+cscθ=
sinθ
1+cosθ
Hence proved.
(ii)L.H.S=
secA−tanA
1
−
cosA
1
Multiplying by secA+tanA in the numerator and denominator of first term,we get
=
(secA−tanA)(secA+tanA)
secA+tanA
−secA
=
(sec
2
A−tan
2
A)
secA+tanA
−secA
=secA+tanA−secA since sec
2
A−tan
2
A=1
=tanA
Adding and subtracting secA, we get
=secA+tanA−secA
=
cosA
1
−(secA−tanA)
Multiplying by secA+tanA in the numerator and denominator of second term,we get
=
cosA
1
−
(secA+tanA)
(secA−tanA)(secA+tanA)
=
cosA
1
−
(secA+tanA)
sec
2
A−tan
2
A
=
cosA
1
−
(secA+tanA)
1
since sec
2
A−tan
2
A=1
=R.H.S
∴
secA−tanA
1
−
cosA
1
=
cosA
1
−
(secA+tanA)
1
Hence proved.