Math, asked by gmahesh, 1 year ago

prove that ,1+cos 2a=cot a sin2 a

Answers

Answered by Yash0012
0
from property.
Cos 2A = 2cos^2A-1
sin2a = 2sinacosa

evaluate the eqn LHS=rhs
Answered by kush193874
13

Answer:

 \bold{\underline{To \ Proof:}}

 \sf \dfrac{1 + cos \theta -  {sin}^{2}  \theta}{sin \theta(1 + cos \theta)}  = cot \theta

 \bold{\underline{Proof:}}

LHS:

 \sf \implies \dfrac{1 + cos \theta -  {sin}^{2}  \theta}{sin \theta(1 + cos \theta)} \\  \\  \sf  {sin}^{2}  \theta = 1 -  {cos}^{2}  \theta :  \\  \sf \implies \dfrac{1 + cos \theta - (1 -  {cos}^{2}  \theta )}{sin \theta(1 + cos \theta)}  \\ \\ \sf (1 -  cos ^{2}  \theta )  =  ( {1}^{2} -  cos ^{2}  \theta ) = (1 -  cos   \theta )(1  +  cos  \theta ) : \\  \sf \implies \dfrac{1 + cos \theta - (1 -  cos  \theta )(1  +   cos  \theta )}{sin \theta(1 + cos \theta)}  \\  \\ \sf \implies \dfrac{ \cancel{1 + cos \theta}(1 - (1 -  cos  \theta ))}{sin \theta( \cancel{1 + cos \theta})}  \\  \\ \sf \implies \dfrac{1 - (1   -  cos  \theta )}{sin \theta} \\  \\ \sf \implies \dfrac{1 - 1    +   cos  \theta )}{sin \theta} \\  \\ \sf \implies \dfrac{cos  \theta }{sin \theta} \\  \\ \sf \implies cot \theta

RHS:

 \sf \implies cot \theta

 \therefore

 \bold{LHS = RHS}

 \underline{ \sf Hence  \: Proved}

Similar questions