Math, asked by Aahwanthebest, 5 months ago

Prove that (1+ cos a )/(1-cos a ) = ((cosec a + cot a ))^2​

Attachments:

Answers

Answered by Tomboyish44
13

To Prove:

\Longrightarrow \sf \dfrac{1 + cosA}{1 - cosA} = \big\{cosecA + cotA\big\}^2

Solution:

Taking the LHS we get:

\Longrightarrow \sf \dfrac{1 + cosA}{1 - cosA}

Let's multiply both the numerator and denominator by the conjugate of 1 - cosA which is 1 + cosA.

\Longrightarrow \sf \dfrac{1 + cosA}{1 - cosA} \ \times \ \dfrac{1 + cosA}{1 + cosA}

\Longrightarrow \sf \dfrac{\Big\{1 + cosA\Big\}\Big\{1 + cosA\Big\}}{\Big\{1 - cosA\Big\} \Big\{1 + cosA\Big\}}

Using the below algebraic identities we get:

  • (a + b) (a + b) = (a + b)²
  • (a + b) (a - b) = a² - b²

\Longrightarrow \sf \dfrac{\Big\{1 + cosA\Big\}^2}{\Big\{1\Big\}^2 - \Big\{cosA\Big\}^2}

Using 1 - cos²A = sin²A we get;

\Longrightarrow \sf \dfrac{\Big\{1 + cosA\Big\}^2}{\Big\{sinA\Big\}^2}

\Longrightarrow \sf \Bigg\{\dfrac{1 + cosA}{sinA}\Bigg\}^2

\Longrightarrow \sf \Bigg\{\dfrac{1}{sinA} + \dfrac{cosA}{sinA}\Bigg\}^2

Using the below trigonometric ratios we get;

  • 1/sinA = cosecA
  • cosA/sinA = cotA

\Longrightarrow \sf \big\{ cosecA + cotA \big\}^2

LHS = RHS

Hence proved.


MisterIncredible: Excellent work !
Tomboyish44: Thank you! :)
Answered by EthicalElite
54

 \sf \dfrac{1 + cosA}{1 - cosA} = (cosecA + cotA)^{2}

LHS:-

 \sf \dfrac{1 + cosA}{1 - cosA}

By rationalisation:-

 \sf \dfrac{1 + cosA}{1 - cosA} \times \dfrac{1 + cosA}{1 + cosA}

 \sf ➝ \: \dfrac{(1 + cosA)(1 + cosA)}{(1 - cosA)(1 + cosA)}

 \sf \color{fuchsia}By \: using \: algebraic \: identities:-

 \sf \color{fuchsia} (a + b) (a + b) = (a + b)²

 \sf \color{fuchsia} (a + b) (a - b) = a² - b²

 \sf ➝ \: \dfrac{(1 + cosA)^{2}}{{(1)}^{2} - {(cosA)}^{2}}

 \sf ➝ \: \dfrac{(1 + cosA)^{2}}{1 - cos²A}

 \sf \color{fuchsia} Now, \: we \: know \: that \: 1 - cos²A = sin²A

 \sf ➝ \: \dfrac{(1 + cosA)^2}{sin²A}

 \sf ➝ \: (\dfrac{1 + cosA}{sinA})^{2}

 \sf ➝ \: (\dfrac{1}{sinA} + \dfrac{cosA}{sinA})^{2}

 \sf \color{fuchsia} As, \: We \: know \: that,

 \sf \color{fuchsia} \dfrac{1}{sinA} = cosecA

 \sf \color{fuchsia} \dfrac{cosA}{sinA} = cotA

 \sf ➝ \: (\dfrac{1}{sinA} + \dfrac{cosA}{sinA})^{2} = (cosecA + cotA)^{2}

RHS:-

 \sf (cosecA + cotA)^{2}

 \sf \therefore LHS = RHS

 \sf Hence, \: Proved

Similar questions